

Assimilation of infrared surface sensitive channels over land and sea ice at Environment Canada

L. Garand, S. K. Dutta, S. Heilliette, and S. Macpherson

19th Intl. TOVS Study Conference Jeju Island, South Korea March 26- April 1, 2014

Outline

- Context & motivation
- Approach
- Results

Context & motivation

Env. Can. moving to ensemble-variational system with:

- Flow-dependent background errors including surface skin temperature correlations with other variables
- Analysis grid at 50 km, increments interpolated to model
 15 km grid
- ~140 AIRS and IASI channels assimilated: many sensitive to low level T, q, and Ts. RTM is RTTOV-10.

Favorable context to attempt assimilating surface-sensitive IR channels over land and sea-ice vs earlier work with GOES (Garand et al. JAM, 2004) with analysis grid at 150 km and no hyperspectral IR.

Numerous challenges

- Reliable cloud mask
- Spectral emissivity
- Highly variable topography
- Background may present non-gaussian error statistics
- Radiance bias correction
- Also improving over available in-situ data, notably regions of
 - dense network of surface stations
 - dense aircraft data (e.g. US, Europe)

Approach guided by prudence

Assimilate under these restrictive conditions over land and sea ice:

- Estimate of cloud fraction < 0.01
- High surface emissivity (> 0.97)
- Relatively flat terrain (local height STD < 100 m)
- Diff between background Ts and rough retrieval based on inverting RTE limited to 4K

Radiance bias correction approach:

 For channels flagged as being surface sensitive, use only ocean data to update bias coefficients

Limitation linked to topography

Criterion used: local STD of topography < 50 m (on 3X3 ~50 km areas)

RED: accepted, white std > 100 m, blue 100>std>50 m

Limitation linked to surface emissivity

Surface emissivity AIRS ch 787

Accept only emissivity > 0.97; Bare soil, open shrub regions excluded.

First attempt: negative impact in region 60-90 N/S

Possible cause: cloud contamination Risk reduction: no assimilation at latitudes > 60 deg.

Second attempt

- Cut latitudes > 60 deg
- Local gradient of topography < 50 m
- Cycle: 6 Feb-17 March 2011

T STD difference vs lead time

NH-Extra_trop

vs ERA Interim

Standard Deviation Difference 2011020600-2011031712 CEH125T3 - CEH125S4

vs own analysis

Standard Deviation Difference 2011020600-2011031712 CEH125T3 - CEH125S4

Consistent positive impact vs ERA Interim and own

T std diff (CNTL-EXP) vs ERA-Interim

0.16

0.12

0.08

0.04

0.00

-0.04

-0.08

-0.12

-0.16

120

Against ERA-Interim

Tropics

048

Forecast Lead Time (hr)

CEH125S4

Standard Deviation Difference 2011020600-2011031712

Sampling interval: 12h

10.00

20.00

30.00

50.00

70.00

100.0

150.0

200.0

250.0

300.0

400.0

500.0

700.0

850.0

925.0

1000.

000

Standard Deviation Difference 2011020600-2011031712 CEH125T3 - CEH125S4

024

072

worst

096

Zonal T STD difference (CNTL-EXP)

Zonal Mean of Standard Deviation Difference 2011020600-2011031712 CEH125T3 - CEH125S4

(SP: 3.6E-03 | SH: -8.7E-03 | EQ: 3.2E-03 | NH: 1.9E-02 | NP: -1.7E-02)

Environnement

Canada

Time series of T std diff at 925 hPa

850 hPa TT anomaly cor.

Validation vs raobs 120-h

SH-extratropics

NH-extratropics

Validation vs raobs 120-h

Added yield: about 15%

(for surface sensitive channels)

Number of radiances assimilated for surface channel AIRS 787 CNTL: ~1400/6h EXP: ~1600/6h

Region: world, EXP excludes surface-sensitive channels at latitudes > 60 Radiance thinning is at 150 km

Std/bias of (O-P) and (O-A), AIRS 787

CNTL EXP

Canada

Conclusion

 Very encouraging results, especially in NH where most of new data are assimilated

Next steps:

- Study sensitivity to topography and emissivity constraints
- Optimize configuration for 60 N/S domain
- Run a summer cycle
- Operational implementation

Longer term

Evaluate problems specific to high latitudes

