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1) Instrument error (usually, but not always, uncorrelated)
2) Mapping operator (H) error (interpolation, radiative transfer)
3) Pre-processing, quality control, and bias correction errors

4) Error of representation (sampling or scaling error), which can
lead to correlated error:
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Current Practice

Until recently, most operation DA systems assumed no correlations
between observations at different levels or locations (i.e., a diagonal R)

To compensate for observation errors that are actually correlated, one or
more of the following is typically done:

— Discard (“thin”) observations until the remaining ones are
uncorrelated (Bergman and Bonner (1976), Liu and Rabier (2003))

— Local averaging (“superobbing”) (Berger and Forsythe (2004))
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— Inflate the observation error variances (Sq

Theoretical studies (e.g. Stewart et al., 2009) inWee= Lt : ing even
approximate correlation structures outperfor // 2 I __,_< variance
inflation 7 "

“In January, 2013, the Met Office went operatlonal with a vertical
observation error covariance submatrix for the IASI instrument, which
showed forecast benefit in seasonal testing in both hemispheres (Weston
et al. (2014)) 3




Methods*to Estimate Covariance

Matrices

Several methods exist which can inform
estimates of the background and/or A
observation error covariance matrices
e All methods have free parameters and

2. | Hollingsworth-L6nnberg Method
(Hollingsworth and Lonnberg, 1986)

2 . .
u~ Assumes no spatially-correlated observation error

Extrapolate red curve to zero
separation, and compare with
innavation variance (purple dot)

make different assumptions; none are
clearly superior to the others.

Knowledge of when and how each IR
method may produce sub-optimal results <—>Mean of ob minus forecast (O-F)

covariances, binned by separation distance

is the subject of current research.

Observation Based Methods

. ’
1. Desroziers’ Method 3. e.g. Oke and Sakov 2007

(Desroziers et al. 2005)

(b) 1_averaged mSLA field
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Iteration is done on this problem. We need to invert R!




4DVar Dual Formulation

(HBH" +R)z =(y—Hx,)
R (HBH" +R)z=R"*(y-Hx,)

Change of variables
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Iteration is done on the partial step and then mapped back with BHT
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Channel Number

Statistical Estimate

Temperature
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Desroziers’ method estimate of
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error correlation matrix for ATMS
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- Practical'lmplementation: What

about Convergence?

e The condition number of a matrix X is defined by omax(X)/omin(X),
which is the ratio of the maximum singular value of X to the
minimum one. (Singular value == eigenvalue for symmetric X)

* Adding correlated error increases the condition number, slowing
down convergence of the solver.

 We can control how long the solver takes by constructing an
approximate matrix with any condition number we choose.

e How to improve conditioning:

1. Preconditioning by multiplying by diagonal scaling matrices

2. Increase the diagonal values (additively) of the matrix (e.g.
Weston et al. (2014)).

3. Find a positive definite approximation to the matrix by

altering the eigenvalue spectrum (Ky-Fan p-k norm).
9



ATMS Original and Reconditioned

Eigenspectra
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“Practical Implementation: Cauchy

dnterlacing Theorem

What happens when radiance profiles are incomplete (i.e., at a
given location, some channels are missing, usually due to failing

QC checks)?

Cauchy interlacing theorem

Let A be a symmetric n X n matrix. The m X m matrix B, where m < n, is called

a compression of A if there exists an orthogonal projection P onto a subspace of
dimension m such that P*AP = B. The Cauchy interlacing theorem states:

Theorem. If the eigenvaluesof Aare a, < ... < a,, and those of Bare 6, < ... < 6, <
<8, ,thenforallj<m+1,

ol </8] oM

Notice that, whenn - m =1, we have a;< 6, < a;,, hence the
name interlacing theorem.



http://en.wikipedia.org/wiki/Compression_(functional_analysis)

Experiment Name {95% CI {99% C1{99.99% Cl|Mean Iter Description
atid 0 0 0 56 :Control run, no correlated error for ATMS or 1ASI, default diag(R)
atmsc018 5 3 3 68  iRecondition Desroziers ATMS correlation matrix to 18, default diag(R)
iasic169 5 3 2 72 iRecondition Desroziers IASI correlation matrix to 169, default diag(R)
atmsiasi 8 5 2 78  iBoth of the above
Dzratmsc018 9 5 3 81  iSame as atmsc018, Desroziers diag(R), moisture 1/2 compromise diag(R)
Dzriasic169 4 3 2 88  iSame as iasic169, Desroziers diag(R), moisture 1/2 compromise diag(R)
Drzatmsiasi 10 | 4 4 104  iSame as atmsiasi, Desroziers diag(R), moisture 1/2 compromise diag(R)
Wesatmsc018 13 | 4 3 65 iSame as Dzratmsc018, but uses Weston-style reconditioning
Wesiaisc169 12 9 2 84  iSame as Dzriasic169, but uses Weston-style reconditioning
Weshoth 16 | 13 3 87  Same as Drzatmsiasi, but uses Weston-style reconditioning

ATMS only IASI only ATMS & IASI




Raob

ECMWEF-Analysis

2013070100 - 2013083118 Wesboth: Correlated error for both ATMS and IASI with Weston reconditioning

*Same as FNMOC standard scorecard, with self-analysis replaced by ECMWF

analysis, confidence level from 95% to 99%, no thresholding

Reference Level Region Variable | Lead Time| Metric Weight Score
Fixed Buoy None NH Wind Speed 72 Mean Error 2 0
Fixed Buoy None SH Wind Speed 72 Mean Error 2 0
Fixed Buoy None Tropics Wind Speed 72 Mean Error 2 0
Radiosondes 100.0 Global Geopotential 72 RMSE 1 1
Radiosondes 250.0 Global Air Temp 72 RMSE 1 0
Radiosondes 250.0 Global Wind 72 Vector RMSE 1 0
Radiosondes 500.0 Global Geopotential 72 RMSE 1 1
Radiosondes 850.0 Global Air Temp 72 RMSE 1 0
Radiosondes 850.0 Global Wind 72 Vector RMSE 1 1
EC-Analysis 200.0 NH Wind 72 Vector RMSE 1 1
EC-Analysis 200.0 Tropics Wind 72 Vector RMSE 1 1
EC-Analysis 500.0 NH Geopotential 96 AC 4 4
EC-Analysis 500.0 SH Geopotential 96 AC 1 0
EC-Analysis 850.0 NH Wind 72 Vector RMSE 1 1
EC-Analysis 850.0 Tropics Wind 72 Vector RMSE 2 2
EC-Analysis 1000.0 NH Geopotential 96 AC 1 0
EC-Analysis 1000.0 SH Geopotential 96 AC 1 1
13
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Main Conclusions

The Desroziers error covariance estimation methods
can quantify correlated observation error

Minimal changes can be made to the estimated error
correlations to fit operational time constraints

After accounting for correlations, reducing default
variances improves forecasts

Correctly accounting for correlated observation error in
satellite data assimilation improves forecasts

One must be careful comparing experiments using
scorecards, especially those with thresholding.
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