

Accounting for Correlated Satellite Observation Error in NAVGEM

Bill Campbell and Liz Satterfield Naval Research Laboratory, Monterey CA

ITSC-20 Oct 27 – Nov 3, 2015 Lake Geneva, WI, USA

2

- 1) Instrument error (usually, but not always, uncorrelated)
- 2) Mapping operator (H) error (interpolation, radiative transfer)
- 3) Pre-processing, quality control, and bias correction errors
- 4) Error of representation (sampling or scaling error), which can lead to correlated error:

True Temperature in Model Space

T=28°	T=38°	T=58°
T=30°	T=44°	T=61°
T=32°	T=53°	T=63°

Current Practice

- Until recently, most operation DA systems assumed no correlations between observations at different levels or locations (i.e., a diagonal R)
- To compensate for observation errors that *are* actually correlated, one or more of the following is typically done:
 - Discard ("thin") observations until the remaining ones are uncorrelated (Bergman and Bonner (1976), Liu and Rabier (2003))
 - Local averaging ("superobbing") (Berger and Forsythe (2004))
 - Inflate the observation error variances (Stewart et al. (2008, 2013)
- Theoretical studies (e.g. Stewart et al., 2009) in dicate the unchuding even approximate correlation structures outperformediation variance inflation
- *In January, 2013, the Met Office went operational with a vertical observation error covariance submatrix for the IASI instrument, which showed forecast benefit in seasonal testing in both hemispheres (Weston et al. (2014))

Methods to Estimate Covariance Matrices

3.

- Several methods exist which can inform ightarrowestimates of the background and/or observation error covariance matrices
- All methods have free parameters and ightarrowmake different assumptions; none are clearly superior to the others.
- Knowledge of when and how each ightarrowmethod may produce sub-optimal results is the subject of current research.

Desroziers' Method 1. (Desroziers et al. 2005) $\left\langle \left(\vec{\mathbf{O}} - \vec{\mathbf{F}} \right) \left(\vec{\mathbf{O}} - \vec{\mathbf{A}} \right)^T \right\rangle = \mathbf{R}$ $\left\langle \left(\vec{\mathbf{A}} - \vec{\mathbf{F}} \right) \left(\vec{\mathbf{O}} - \vec{\mathbf{F}} \right)^T \right\rangle = \mathbf{H} \mathbf{B} \mathbf{H}^T$ $\left\langle \left(\vec{\mathbf{O}} - \vec{\mathbf{F}} \right) \left(\vec{\mathbf{O}} - \vec{\mathbf{F}} \right)^T \right\rangle = \mathbf{R} + \mathbf{H} \mathbf{B} \mathbf{H}^T$

covariances, binned by separation distance

$$\underline{w} \equiv \underline{x} - \underline{x_f} = BH^T \left(HBH^T + R \right)^{-1} \left(\underline{y} - H \underline{x_f} \right)$$
$$\left(B^{-1} + H^T R^{-1} H \right) \underline{w} = \left(B^{-1} + H^T R^{-1} H \right) BH^T \left(HBH^T + R \right)^{-1} \left(\underline{y} - H \underline{x_f} \right)$$
$$\left(B^{-1} + H^T R^{-1} H \right) \underline{w} = H^T R^{-1} \left(\underline{y} - H \underline{x_f} \right)$$

4DVar Primal Formulation

 $\underline{s} \equiv B^{1/2} \underline{w}$ Preconditioning is $\underline{w} = B^{-1/2} \underline{s}$ done with B^{-1/2}

$$B^{-1/2}\left(B^{-1} + H^T R^{-1} H\right)\left(B^{-1/2} \underline{s}\right) = B^{-1/2} H^T R^{-1}\left(\underline{y} - H \underline{x}_f\right)$$

$$\left(I + B^{-1/2}H^T R^{-1}HB^{-1/2}\right)\underline{s} = B^{-1/2}H^T R^{-1}\left(\underline{y} - H\underline{x}_f\right)$$

Iteration is done on this problem. We need to invert R!

$$(HBH^{T} + \tilde{R})\underline{z} = (\underline{y} - H\underline{x}_{b})$$

$$\tilde{R}^{-1/2}(HBH^{T} + \tilde{R})\underline{z} = \tilde{R}^{-1/2}(\underline{y} - H\underline{x}_{b})$$
Change of variables
$$\underline{w} = \tilde{R}^{1/2}\underline{z}$$

$$\underline{z} = \tilde{R}^{-1/2}\underline{w}$$

$$R = \tilde{R}^{1/2}C\tilde{R}^{1/2}$$

$$\tilde{R} = diag\{\sigma_{i,j}\}$$

$$\tilde{R}^{-1/2} (HBH^{T} + \tilde{R}) \tilde{R}^{-1/2} \left(\tilde{R}^{1/2} \underline{z} \right) = \tilde{R}^{-1/2} (\underline{y} - H \underline{x}_{\underline{b}})$$
$$(\tilde{R}^{-1/2} HBH^{T} \tilde{R}^{-1/2} + \underline{I}) \underline{w} = \tilde{R}^{-1/2} (\underline{y} - H \underline{x}_{\underline{b}})$$

Iteration is done on the partial step and then mapped back with BH^{T}

Application to ATMS

Observation Error Correlation Estimation for ATMS

Current Treatment

and for ALL observations

Statistical Estimate

error correlation matrix for ATMS

- The condition number of a matrix X is defined by σ_{max}(X)/σ_{min}(X), which is the ratio of the maximum singular value of X to the minimum one. (Singular value == eigenvalue for symmetric X)
- Adding correlated error increases the condition number, slowing down convergence of the solver.
- We can control how long the solver takes by constructing an approximate matrix with *any condition number we choose*.
- How to improve conditioning:
 - **1. Preconditioning** by multiplying by diagonal scaling matrices
 - Increase the diagonal values (additively) of the matrix (e.g. Weston et al. (2014)).
 - **3.** Find a positive definite approximation to the matrix by altering the eigenvalue spectrum (Ky-Fan p-k norm).

5 Original Ky-Fan Additive .og(Eigenvalue) 0.50 0.10 0.05 0.01 5 10 15

Ky-Fan and Additive Reconditioning

What happens when radiance profiles are incomplete (i.e., at a given location, some channels are missing, usually due to failing QC checks)?

Cauchy interlacing theorem

Let A be a symmetric $n \times n$ matrix. The $m \times m$ matrix B, where $m \le n$, is called a <u>compression</u> of A if there exists an orthogonal projection P onto a subspace of dimension m such that $P^*AP = B$. The Cauchy interlacing theorem states:

Theorem. If the eigenvalues of *A* are $\alpha_1 \leq ... \leq \alpha_n$, and those of *B* are $\beta_1 \leq ... \leq \beta_j \leq ... \leq \beta_m$, then for all j < m + 1,

 $\alpha^j \leq \beta^j \leq \alpha^{n-m+j}$

Notice that, when n - m = 1, we have $\alpha_j \le \beta_j \le \alpha_{j+1}$, hence the name *interlacing* theorem.

Experimental Design

Experiment Name	95% CI	99% CI	99.99% CI	Mean Iter	Description	
atid	0	0	0	56	Control run, no correlated error for ATMS or IASI, default diag(R)	
atmsc018	5	3	3	68	Recondition Desroziers ATMS correlation matrix to 18, default diag(R)	
iasic169	5	3	2	72	Recondition Desroziers IASI correlation matrix to 169, default diag(R)	
atmsiasi	8	5	2	78	Both of the above	
Dzratmsc018	9	5	3	81	Same as atmsc018, Desroziers diag(R), moisture 1/2 compromise diag(R)	
Dzriasic169	4	3	2	88	Same as iasic169, Desroziers diag(R), moisture 1/2 compromise diag(R)	
Drzatmsiasi	10	4	4	104	Same as atmsiasi, Desroziers diag(R), moisture 1/2 compromise diag(R)	
Wesatmsc018	13	4	3	65	Same as Dzratmsc018, but uses Weston-style reconditioning	
Wesiaisc169	12	9	2	84	Same as Dzriasic169, but uses Weston-style reconditioning	
Wesboth	16	13	3	87	Same as Drzatmsiasi, but uses Weston-style reconditioning	

ATMS only	IASI only	ATMS & IASI

ECMWF-Analysis

Wesboth (Proposed Scorecard*)

	2013070100 - 2013083118 Wesboth: Correlated error for both ATMS and IASI with Weston reconditioning							
	Reference	Level	Region	Variable	Lead Time	Metric	Weight	Score
Buoy	Fixed Buoy	None	NH	Wind Speed	72	Mean Error	2	0
	Fixed Buoy	None	SH	Wind Speed	72	Mean Error	2	0
	Fixed Buoy	None	Tropics	Wind Speed	72	Mean Error	2	0
Raob	Radiosondes	100.0	Global	Geopotential	72	RMSE	1	1
	Radiosondes	250.0	Global	Air Temp	72	RMSE	1	0
	Radiosondes	250.0	Global	Wind	72	Vector RMSE	1	0
	Radiosondes	500.0	Global	Geopotential	72	RMSE	1	1
	Radiosondes	850.0	Global	Air Temp	72	RMSE	1	0
	Radiosondes	850.0	Global	Wind	72	Vector RMSE	1	1
CMWF-Analysis	EC-Analysis	200.0	NH	Wind	72	Vector RMSE	1	1
	EC-Analysis	200.0	Tropics	Wind	72	Vector RMSE	1	1
	EC-Analysis	500.0	NH	Geopotential	96	AC	4	4
	EC-Analysis	500.0	SH	Geopotential	96	AC	1	0
	EC-Analysis	850.0	NH	Wind	72	Vector RMSE	1	1
	EC-Analysis	850.0	Tropics	Wind	72	Vector RMSE	2	2
	EC-Analysis	1000.0	NH	Geopotential	96	AC	1	0
	EC-Analysis	1000.0	SH	Geopotential	96	AC	1	1
ũ								13

*Same as FNMOC standard scorecard, with self-analysis replaced by ECMWF analysis, confidence level from 95% to 99%, no thresholding

 The Desroziers error covariance estimation methods can quantify correlated observation error

Main Conclusions

- Minimal changes can be made to the estimated error correlations to fit operational time constraints
- After accounting for correlations, reducing default variances improves forecasts
- Correctly accounting for correlated observation error in satellite data assimilation improves forecasts
- One must be careful comparing experiments using scorecards, especially those with thresholding.