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Sources of Observation Error 
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1) Instrument error (usually, but not always, uncorrelated) 
2) Mapping operator (H) error (interpolation, radiative transfer) 
3) Pre-processing, quality control, and bias correction errors 
4) Error of representation (sampling or scaling error), which can 

lead to correlated error: 
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Current Practice 

• Until recently, most operation DA systems assumed no correlations 
between observations at different levels or locations (i.e., a diagonal R) 

• To compensate for observation errors that are actually correlated, one or 
more of the following is typically done: 
– Discard (“thin”) observations until the remaining ones are 

uncorrelated (Bergman and Bonner (1976), Liu and Rabier (2003)) 
– Local averaging (“superobbing”)  (Berger and Forsythe (2004)) 
–  Inflate the observation error variances (Stewart et al. (2008, 2013) 

• Theoretical studies (e.g. Stewart et al., 2009) indicate that including even 
approximate correlation structures outperforms diagonal R with variance 
inflation 

• *In January, 2013, the Met Office went operational with a vertical 
observation error covariance submatrix for the IASI instrument, which 
showed forecast benefit in seasonal testing in both hemispheres (Weston 
et al. (2014)) 



4 

Methods to Estimate Covariance 
Matrices  

Desroziers’ Method 
(Desroziers et al. 2005)   

• Several methods exist which can inform 
estimates of the background and/or 
observation error covariance matrices 

• All methods have free parameters and 
make different assumptions; none are 
clearly superior to the others. 

• Knowledge of when and how each 
method may produce sub-optimal results 
is the subject of current research.  

Observation Based Methods  
e.g. Oke and Sakov 2007   
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4DVar Primal Formulation 

Preconditioning is 
done with B-1/2 

Iteration is done on this problem. We need to invert R! 



4DVar Dual Formulation 

Change of variables 

C 
Iteration is done on the partial step and then mapped back with BHT 
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Application to ATMS 

Advanced Technology 
Microwave Sounder (ATMS) 

13 temperature channels 
9 moisture channels 
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Current observation error 
correlation matrix used for ATMS, 

and for ALL observations 
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Observation Error Correlation 
Estimation for ATMS 

Statistical Estimate 
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Desroziers’ method estimate of 
interchannel portion of observation 

error correlation matrix for ATMS 
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Practical Implementation: What 
about Convergence? 

• The condition number of a matrix X is defined by σmax(X)/σmin(X), 
which is the ratio of the maximum singular value of X to the 
minimum one. (Singular value == eigenvalue for symmetric X) 

• Adding correlated error increases the condition number, slowing 
down convergence of the solver. 

• We can control how long the solver takes by constructing an 
approximate matrix with any condition number we choose. 

• How to improve conditioning:  
1. Preconditioning by multiplying by diagonal scaling matrices 
2. Increase the diagonal values (additively) of the matrix (e.g. 

Weston et al. (2014)). 
3. Find a positive definite approximation to the matrix by 

altering the eigenvalue spectrum (Ky-Fan p-k norm). 
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ATMS Original and Reconditioned 
Eigenspectra 

Ky-Fan and Additive Reconditioning 
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Practical Implementation: Cauchy 
Interlacing Theorem 

Cauchy interlacing theorem 
Let A be a symmetric n × n matrix. The m × m matrix B, where m ≤ n, is called 
a compression of A if there exists an orthogonal projection P onto a subspace of 
dimension m such that P*AP = B. The Cauchy interlacing theorem states: 
 
Theorem. If the eigenvalues of A are α1 ≤ ... ≤ αn, and those of B are β1 ≤ ... ≤ βj ≤ 

... ≤ βm, then for all j < m + 1, 
 
 
  
Notice that, when n − m = 1, we have αj ≤ βj ≤ αj+1, hence the 

name interlacing theorem. 

What happens when radiance profiles are incomplete (i.e., at a 
given location, some channels are missing, usually due to failing 
QC checks)? 

http://en.wikipedia.org/wiki/Compression_(functional_analysis)
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Experimental Design 
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Wesboth (Proposed Scorecard*) 
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*Same as FNMOC standard scorecard, with self-analysis replaced by ECMWF 
analysis, confidence level from 95% to 99%, no thresholding  
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• The Desroziers error covariance estimation methods 
can quantify correlated observation error 

• Minimal changes can be made to the estimated error 
correlations to fit operational time constraints 

• After accounting for correlations, reducing default 
variances improves forecasts 

• Correctly accounting for correlated observation error in 
satellite data assimilation improves forecasts 

• One must be careful comparing experiments using 
scorecards, especially those with thresholding. 

Main Conclusions 
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