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Motivation & Goal

Study Earth from space to improve our scientific understanding of global climate change; derive global 
IR spectral emissivity with hyperspectral IR measurements from operational satellites.

1.IR hyperspectral radiance measurements are available from current AIRS (since May 2002) and IASI  
(October 2006), and will be available from future operational weather satellites.
2.Land surface emissivity and skin temperature from the current and future operational satellites can, and 
will, reveal critical information on the Earth’s land surface type properties and Earth’s ecosystem.

3.Long-term and large-scale observations, needed for global change monitoring and other research, can only 
be supplied by satellite remote sensing. 
4.Accurate surface emissivity retrieved from satellite measurements are beneficial to

•

 

helping to understand the nature of radiative transfer process for the Earth and atmospheric 
environment,

•

 

assisting assimilation of hyperspectral IR radiances in NWP models, 
•

 

improving retrieval accuracy for other thermodynamic parameters (e.g., Ts , CO, CO2 , O3 , H2 O),
•

 

helping surface skin temperature retrieval from other satellite broad-band measurements, 
•

 

improving accuracy of surface radiation budget calculation for climate studies, and
•

 

long-term monitoring of the global environment and climate change.
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Emissivity (εν

 

) is linear to Radiance (Rν

 

)

    

Rν =  observed spectral radiance
εν =  spectral emissivity
Bν =  spectral Planck function
Ts =  surface skin temperature
τν ( p1 →  p2 ) = spectral transmittance from pres. p1 to p2     

T( p) = temperature at pressure p
H = solar irradiance
θsun = solar zenith angle
θsat = sattlite zenith angle
Fν

d =  down welling thermal flux
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The surface is assumed to be Lambertian (or diffuse reflection:
ρν

t =  spectral surface reflectivity, (1-εν )
ρν

s =  spectral solar reflectivity, (1-εν ) / π



Training Dataset & Emissivity Regression 

    F(εν ) = log[log(ε HB −ε LB +δ)− log(ε HB −εν )]
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•

 

Lab. measured emis. converted to emis. logarithm function F(ε) 
to constrain emis. retrieval.

•

 

A set of emis. logarithm functions are used to calculate its 
Eigenvectors and their amplitudes. Emis. amplitudes are used 
with other other parameters as a state vector to calculate 
radiance. 

•

 

A set of radiances are used to calculate its Eigenvectors and 
their amplitudes.

•

 

Regression coefficients are generated using a training database 
(state vector) and their associated radiances. State vector is 
retrieved with measured radiance. Emis. EOF amplitudes are 
part of the state vector.

•

 

Emissivity spectrum is calculated with retrieved emis. EOF 
amplitudes.

Atmospheric :
Surface :

Cloud :

An all-seasonal-globally representative training database (UW SeeBor Database).
Ts =Ta +Tδ

 

, where Tδ

 

is a random number generated value with a mean of 0 K and a STD of 
3 K over water and 10 K over land. ε is randomly assigned to profile from ε database.
Use parameterization of balloon and aircraft cloud microphysical data base to specify cloud 
effective particle size and cloud optical depth using random number generator to specify 
visible cloud optical depth within a reasonable range. 



Cloud Detection within Retrieval

Note: φ = 0, 1, and 2 are for clear sky, ice cloud, and water clouds, 
respectively; and Hc is cloud top height relative to surface, φ is cloud 
phase, and τcld is cloud visible optical depth.Regression with 

“mixed” coefficients

φ

 

≤

 

0.8, and 
τcld ≤

 

0.007
Regression with 

“clear” coefficients

Regression with 
“cloud” coefficients

[Hc > 2.0 km and τcld ≤

 

0.2], or 
[Hc ≤

 

2.0 km and τcld ≤

 

0.8]. 

No

Yes

Yes

No Cloud detected

Cloud undetected

Multi-stage regression retrievals are performed. The first-stage involves mixed (i.e., clear and cloudy) 
regression. The second-stage (e.g., either clear or cloudy) depends on the cloud detection criteria that are 
based on first-stage retrieved cloud parameters.



Emis. Accuracy Estimation Under Clear-sky

Note: since the emissivity is linear to channel radiances, we chose to use retrieved emissivity from linear 
EOF regression, not further retrieved in physical iteration. However, if the physical retrieval is 
performed for other parameters, emissivity will be further refined through physical iteration. 

•

 

The emissivity assigned to each training 
profile is randomly selected from a 
laboratory measured emissivity database, 
indicated in panel a, and has a wide variety 
of surface types suitable for different 
geographical locations. The vertical bars  
show the emissivity STD for this dataset. 

•

 

Estimated surface emissivity retrieval  
accuracy, the mean difference (or bias) in 
curve and the STDE in vertical bars shown 
in panel b, is training data dependent. 

(a) Emissivity training variability

(b) Emissivity retrieval accuracy



Emis. Ret. and Rad. Fitting Samples

It is to demonstrate that the technique separates surface emissivity from skin temperature:
Samples shown are for both day and night observations over the Sahara Desert. Simulated spectral radiances 
(with rtv emis in red curves; emis of 1 in green curves) are plotted in comparison with the measurements 
(blue curves). Retrieved surface emissivity spectra are plotted in the bottom panels with IASI day and night 
observations, respectively. 

Over Sahara (Lat.=23.38°N; Lon.=24.41°E); 
Daytime (SZA=30.5°), 2007.08.01     

Over Sahara (Lat.=23.41°N; Lon.=24.83°E); 
Nighttime (SZA=120.6°), 2007.08.01

Ts = 322.6 K Ts = 303.2 K



Namib and Kalahari Deserts for ε
 

Evaluation 

G. C. Hulley, S. J. Hook, E. Manning, S.- 
Y. Lee, and E. Fetzer, “Validation of the 
Atmospheric Infrared Sounder (AIRS) 
version 5 land surface emissivity product 
over Namib and Kalahari deserts,” J. 
Geophys. Res., vol. 114, no. D1, pp. 
9104.1–9104.11, Oct. 2009. 

•Kalahari: The majority of the sand lies 
on the level plains of the Kalahari Basin, 
sand dunes mixed with grassy scrublands 
and sparse trees.

•Namib: The vast expanse of shifting 
dunes is almost completely devoid of 
vegetation except for sparse perennial 
grasses.

•Different sand mineralogy from Namib to 
Kalahari sites.



Temporal Variation over Namib and Kalahari
Namib: Lat.=24.75±0.15°S; 

Lon.=15.30±0.15°E
Kalahari:  Lat.=24.75±0.15°S; 

Lon.=15.30±0.15°E

 
ζν = εν

max -εν
min

1-ε ν

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 100% .Emis. temporal variation is  ζ1150 (Namib) = 23.2%;    ζ1150 (Kalahari) = 71.4%



Emissivity Validation / Evaluation

•

 

We will use the Namib site for absolute validation 
and the Kalahari site for relative spectral-shape 
validation.

•

 

The quartz-doublet region from the Namib to the 
Kalahari site, is well captured by retrievals, due to 
the different sand mineralogy at these 2 sites. 

Namib Site

Kalahari Site



Cloud filtering and outlier rejection:

•

 

Due to cloud coverage, not every measurement can provide surface 
parameters; however, the surface parameters can be retrieved under 
optically thin clouds with a relatively poor accuracy in comparison 
with that retrieved under clear-sky conditions. 

•

 

The surface emissivity composition can be assembled over a period 
of time and area. Single retrievals within a spatial grid (area) 
meeting the Quality Filter criteria will be taken to generate a mean 
emissivity. 

Quality Filter for Global Assembled Mean 

  

Q.F. criteria are listed as:
   1.  τ cld ≤ 0.5 ,

   2.  A1
F − A1

F ≤ std( A1
F ) ,  and

   3.  A2
F − A2

F ≤ std( A2
F ) .

All Retrievals (149 rtv.) Pass filter 1 (137 rtv.) Pass filter 1-2 (92 rtv.)

April 2009 – Rub’ al Khali, Saudi Arabia [21.25° < lat. ≤

 

21.75°;  54.25° < lon. ≤

 

54.75°] 

Pass filter 1-3 (65 rtv.)



Monthly-Mean Land Ts and ε1140 (0.5-deg scale)

(c) January 2008: Ts (K) (d) January 2008: ε

 

at 1140 cm-1

(a) July 2007: Ts (K) (b) July 2007: ε

 

at 1140 cm-1



ε950 Seasonal Variation  

2007.07

2008.07

2008.04 2008.05 2008.062008.03

2007.12 2008.01 2008.022007.11

2007.08 2007.09 2007.10

The emissivity variation from month to month is coherent, which 
indicates that the emissivity variation is associated with seasonal changes 
of the weather or surface weather (i.e., rainfall modifying soil moisture or 
snowfall accumulating on the surface) and the varying ground cover with 
a different vegetation coverage. 



ε950 Seasonal Variation  

2007.07

2008.07

2008.04 2008.05 2008.062008.03

2007.12 2008.01 2008.022007.11

2007.08 2007.09 2007.10

Each spring after a cold, sunny, windy, and dry winter, sandstorms strike 
Northern China and the yellow dust migrates from China’s interior (the 
Gobi and Ordos deserts) to its capital, Beijing, and eastern seaboard, thus 
decreasing the emissivity over wide regions while the ground is still very 
dry with minimum rainfall in the winter and early spring seasons. 



•

 

A state-of-the-art retrieval algorithm, dealing with all-weather conditions, has been developed and applied 
to IASI radiance measurements. Surface emissivity is retrieved using multi-stage linear EOF physical- 
regressions. 

•

 

Initial emissivity validation over the Namib and Kalahari deserts is performed. IASI Emissivity retrieval 
accuracy under clear-sky conditions is estimated that a STDE is about 0.02 and 0.04 for longwave and 
shortwave window regions, respectively. 

•

 

Results from IASI retrievals indicate that surface emissivity retrieved with satellite IR ultraspectral data 
can capture different land surface type properties. The seasonal variation of global land surface emissivity 
derived from satellite IR ultraspectral data is evident. 

•

 

Operational satellite IR ultraspectral data can provide information for monitoring the Earth’s environment 
and global change as well as the study of ecosystem health that plays an important role in understanding 
the impact of climate change and human activity on altered degradation, biodiversity, and ecosystem 
sustainability. 

•

 

Focus on emissivity validation/evaluation for providing more-definitive accuracy of the emissivity 
products. Algorithm improvements, along with its product validation, will be made and applied to current 
and future satellite instruments to provide data for long-term monitoring of the Earth’s environment and 
for climate studies.

•

 

Produce IASI/AIRS emissivity and surface skin temperature (from May 2002) to current and future 
operational IASI and CrIS for monitoring global change.

Summary and Future Work  
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