

# Inter-Calibration of Meteosat IR and WV channels using HIRS data



Jörg Schulz, Tim Hewison, Rob Roebeling and Bertrand Theodore

#### EUMETSAT

EUM/OPS/VWG/12/1285 Issue 1 21/03/2012

ITSC-18, 21-27 March 2012, Toulouse, France

Slide: 1





- Fundamental Climate Data Record for geostationary satellites The Challenge
- Approach to Inter-calibration using HIRS/IASI as a reference
- Spectral Conversion Functions
- Conclusions



# **FCDR Creation - Scale of the Challenge**



- International community has embarked on the creation of FCDRs for archived data (EUMETSAT, NOAA-CDR program and similar programs);
- It is essential for fulfilling GCOS ECV requirements;
- Inter-calibration of the sensors to allow seamless products is a weakness in existing data records, e.g., GEWEX data projects;
- The creation of FCDRs has a large science component calling for collaborations of space agencies and scientists;
- GSICS and SCOPE-CM are the right frameworks to make progress and achieve GCOS goals.

Slide: 3

Figure: Courtesy of Ken Knapp, NOAA-NCDC

SC-18, 21-27 March 2012, Toulouse, France

## Scale of the Challenge



Fig: Satellites used for the ISCCP climate data record. (Courtesy of Ken Knapp, NOAA-NCDC)

ITSC-18, 21-27 March 2012, Toulouse, France



# Scale of the Challenge







## **Objectives, Prerequisites and Method**

### **Objective:**

*To recalibrate time-series Meteosat First Generation and Meteosat Second Generation infrared radiances from 1982 till date using an external reference (polar orbiting sounders).* 

#### Prerequisites:

- Inter-calibration back to 1982
- Target accuracy over the time-series better than 1 K
- Inter-calibration with uncertainty estimate

## Method

- Define reference instrument and standards (HIRS and ultimately IASI)
- Define the inter-calibration approach
- Estimate the uncertainties (spectral conversions, reference drift, calibration transfer uncertainty (e.g. for SNOs)
- Reprocess, verify and validate the re-calibrated data record



## **Error and Uncertainties sources**

> 1. Differences between reference instruments over time (HIRS/2 vs. HIRS/3 vs. HIRS/4)

> 2. Differences between monitored instruments (MVIRI VS. SEVIRI)



# Define the Calibration Method: Cumulative uncertainty from calibration transfer



# Define the Calibration Method: Reduced number of calibration transfers



# Define the Calibration Method: Taking a reference in the middle of time series



# **HIRS Inter-Calibrated Product NOAA/NCDC**



- Cloud-cleared and limb-corrected HIRS channel BTs (Nov. 1978 to Mar. 2009)
- Technique applied to all HIRS channels
- Monthly differences of inter-calibrated instruments mostly within ±0.2 K.
- Unclear: Uncertainty estimates for the HIRS inter-calibration.

Courtesy of Lei Shi, NOAA-NCDC



# Define the Calibration Method: Suspension Bridge Model of Transferring References



# **Alternative: Zipper Model of Transferring References**



## **Estimate Uncertainty: Spectral Conversion Functions**

#### **Objective**

*To develop Spectral Conversion Functions to account for Spectral Response Function differences and select which HIRS channels represent the MFG and MSG infrared channels best.* 

#### Method

- Restricted evaluation to a sounding (~6µm) and a window (~10µm) channel;
- MFG, MSG and HIRS brightness temperatures are calculated for a selection of ECMWF profiles (from Chevallier 2001) using RTTOV;
- Uncertainties are assessed for three conditions: all latitudes, all sky, two angles (nadir and 60°);
- HIRS channels that fit best to MFG or MSG are determined by assessing different fitting methods and using RMSD as a verification metric



## **Statistics of different Spectral Conversion Functions**

| Channels | Fit       | Latitude         | Cloud         | Angles  | WV Tb<br>RMSD [K] | IR Tb<br>RMSD [K] |
|----------|-----------|------------------|---------------|---------|-------------------|-------------------|
| Single   | Linear    | ±90°             | All           | 0°, 60° | 2.18              | 0.60              |
| Multiple | Linear    | ±90°             | All           | 0°, 60° | 1.19              | 0.046             |
| Multiple | Quadratic | ±90°             | All           | 0°, 60° | 0.74              | 0.034             |
| Multiple | Quadratic | ±60°             | All           | 0°, 60° | 0.62              | 0.034             |
| Multiple | Quadratic | $\pm 45^{\circ}$ | All           | 0°, 60° | 0.56              | 0.034             |
| Multiple | Quadratic | ±90°             | Clear only    | 0°, 60° | 0.76              | 0.040             |
| Multiple | Quadratic | ±90°             | No high cloud | 0°, 60° | 0.78              | 0.035             |
| Multiple | Quadratic | ±90°             | Cloudy only   | 0°, 60° | 0.65              | 0.017             |
| Multiple | Quadratic | ±90°             | All           | 0° only | 0.77              | 0.029             |

- Fit much improved using multiple channels & quadratic form
- But not much by limiting range So keep it general: global, all sky, all angles!



# Uncertainties due to Spectral Conversion for each class of instrument: WV

| Monitored→<br>Reference ↓   | HIRS/2<br>NOAA6-14 | HIRS/3<br>NOAA15-17 | HIRS/4<br>NOAA18-<br>MetopB | MVIRI<br>Meteosat 2-3 | MVIRI<br>Meteosat 4-7 | SEVIRI<br>Meteosat 8-11 |
|-----------------------------|--------------------|---------------------|-----------------------------|-----------------------|-----------------------|-------------------------|
| HIRS/2<br>NOAA6-14          | 0.04               | 1.03                | 1.07                        | 0.07                  | 0.16                  | 0.41                    |
| HIRS/3<br>NOAA15-17         | 0.78               | 0.05                | 0.06                        | х                     | 0.67                  | 0.51                    |
| HIRS/4<br>NOAA18-<br>MetopB | 0.84               | 0.06                | 0.03                        | х                     | 0.74                  | 0.57                    |

#### Mean RMSD Tb [K] of Spectral Conversion Functions for each class of instrument: WV

Also need to:

- Estimate Calibration Transfer Uncertainty (e.g. by SNO)
- Estimate drift in reference transfer standards



# Conclusions

- The international community faces a complex and large task to inter-calibrate the whole fleet of geostationary and HIRS instruments for the IR and WV channels
- GSICS is the framework that needs to work to solve these issues and SCOPE-CM is to provide the community with the inter-calibrated radiances.
- Identified two different approaches to inter-calibrate Meteosat-HIRS
  - Using SNOs or regional subsamples to inter-calibrate HIRS as a homogenised FCDR
  - Use Meteosats as transfer standards to inter-calibrate HIRS
- Developed a systematic way to define spectral conversion functions
- Need to analyse uncertainties in final inter-calibrated radiances for each proposed method separately will also use new reanalysis feedback archive.
- We aim to produce inter-calibrated Meteosat WV & IR archive by 2013.

