

Modeling of Inhomogeneous Surface Properties for the Advanced Technology Microwave Sounder

Thomas J. Kleespies NOAA/NESDIS

Problem

- Radiative transfer with channels that 'see' the surface is problematic because of emissivity and skin temperature uncertainties
- This is especially true of inhomogeneous backgrounds, including coastlines, large rivers, mountainous regions, and even regions of high ocean temperature gradients (e.g. north wall of Gulf Stream).

Inhomogeneous surface over ocean

Possible Solution

• The ability to integrate high resolution databases within a given field-of-view, and perform multiple radiative transfer within the field of view, weigh that according to the antenna beam power, and integrate.

The solid fit line fits almost exactly over the data. The dashed fit line is almost as good.

50% power has a dB reduction of -10 $\log_{10} .50 = -3.01 \text{ m}=1.0$ 95% power has a dB reduction of -10 $\log_{10} .05 = -13.01 \text{ m}=2.0$ 99% power has a dB reduction of -10 $\log_{10} .01 = -20.00 \text{ m}=3.0$

Along track power

Right now ignoring the 45° and 135° slices

Cross track power

Total power

Power expressed as fraction of full power

Sample ATMS scan line with relative antenna power to 50%.

Sample ATMS scan line with relative antenna power to 99%.

Digital Elevation Model for this Study

- GTOPO30 from USGS
- 0.008333° resolution
- translates to .93km at equator

"Radiative Transfer"

- Integrate power/land fraction over fov
- Assume land and sea skin temperature and emissivity homogeneous

"Radiative Transfer" continued

$$T_{B} = \frac{\int_{A} \Phi(A) T_{R}(A) dA}{\int_{A} \Phi(A) dA} \qquad \hat{\Phi} = \frac{1}{\int_{A} \Phi(A) dA}$$
$$= \hat{\Phi} \int_{L} \Phi(L) T_{R}(L) dL + \hat{\Phi} \int_{S} \Phi(S) T_{R}(S) dS$$
$$= T_{RL} \hat{\Phi} \int_{L} \Phi(L) dL + T_{RS} \hat{\Phi} \int_{S} \Phi(S) dS$$

Land Power Fraction

NOAA

Ocean Power Fraction

Power Fraction = Fraction of total antenna power within fov allocated to each surface type

Area of Interest

150 200 250 300 Brightness Temperature

5.2 degree fov

2.2 degree fov

1.1 degree fov

US Deptrof State Geographer © 2009 Tele Atlas Data SIO, NOAA, U.S. Navy, NGA, GEBCO © 2009 Europa Technologies

1

Pointer 10°37'52.90" N 121°08'55.70" E elev 0 ft

Streaming |||||||| 100%

©2007 Google™

Eye alt 6130.69 mi

Example Tb Differences

 $TB_land = 280 TB_sea = 210$

%	Land	Sea	Land	Sea	Tb
Power	Fraction	Fraction	Power	Power	
			Fraction	Fraction	

50%	0.476	0.524	0.491	0.509	244.39
95%	0.329	0.671	0.405	0.595	238.36
99%	0.269	0.731	0.397	0.603	237.80

Thanks to Paul vanDelst for suggesting this comparison

What does this look like just using GDAS within the fov?

- Use the above described methods to determine the various land/ water/ snow/ sea ice fractions and pass to CRTM
- Preliminary results in the following slides from George Gayno, NCEP/EMC/JCSDA/SAIC

IMPACT: ACCOUNTING FOR FOV Power not included EX: NOAA-15 AMSU-A, CHANNEL 2

CONTROL: OBS. MINUS GUESS T_b

IMPACT: CHANGE IN OBS. MINUS GUESS T_b

NORTHERN CANADA

NEGATIVE IS IMPROVEMENT

Potential Improvements

- Work shown here uses the nominal fov centroid zenith angle. It would be better to use the actual angles within the fov.
- Fit as a function of scan position

This is preliminary work

Summary and Discussion

• A method has been presented to use sub-fov radiative transfer to improve radiances over inhomogeneous surfaces

плаа

- Usefulness of this technique is limited by the quality and resolution of available model state/ancillary databases
- Usefulness also limited by the expense of fov integration and multiple RT calculations
- Future application of Moore's law and other hardware development may ease these restrictions

Back up slides

Ocean Temperature

Land temperature

Mixed temperature

This is a first attempt with idl, using it's lores coastline (we don't have the CIA hires coastline, and using the F:\landsea\global.eighth, which is clearly not up to the task.

NOAA-17 AMSU-A and AMSU-B scan pattern in cylindrical coordinates. Coastline is North New Guinea.

