

Utilization of Land Surface Emissivity for Precipitation Retrieval – An Obvious Linkage between ITWG and IPWG – and Implications for GPM-era Algorithms

Ralph Ferraro, Sid Boukabara, Fuzhong Weng NOAA/NESDIS College Park and Camp Springs, MD USA

> Nai-Yu Wang ESSIC, College Park, MD

AND

PMM Science Team Land Surface Characterization Working Group & Affiliates – including Gail Skofronick-Jackson, Christa Peters-Lidard, Catherine Prigent, Fatima Karbou, Chuntao Liu, Joe Turk, Li Li, Sarah Finn, Ken Harrison...

Motivation for this talk...

- We need accurate E retrievals to improve the development of physically based precipitation retrievals over land
 - Q signal (low freq.) over land < ε variability
 - IWP signal (high freq.) over land < ε variability
 - GPM mission focus...international constellation!
- Enhance collaborations between IPWG and ITWG
 - Build off of progress made at 2009 Toulouse workshop and gear towards IPWG-5 (Hamburg, October 2010)

17th International TOVS Study Conference -

Pacific Grove, CA April 2010

– IPWG and GPM need ε under cloudy/precipitating conditions from 10 – 190 GHz

K International Precipitation Working Group

- Scientific need
- PMM Science Team emissivity experiment
 - What we are doing
 - Preliminary results
- Summary and next steps
 - Intercomparison study
 - ITWG/IPWG Synergy

Ts = 280 K, RAIN (Q=0.40), no-scattering

Dry: V = 10 mm

Moist: V = 60 mm

WORKING GROUP

Sensitivity on Retrievals

Results courtesy of B. Johnson/G. Skofronick-Jackson

- Examination of lake effect snow bands from C3VP
- Impacts of incorrect €

 5-10 K @89 GHz
 1 3 K @ 183+7 GHz
- This translates up to 100% error in retrieved snowfall rates (0-2 mm/hr)

IPW5 2 Working Group

S International Precipitation

Study Domain

A diverse set of targets were selected:

•C3VP – 44 N, 80 W •Amazon(2) – 7 S, 70 W and 2 N, 55 W •Open Ocean(3) – 0 N, 150 W; 35 N, 30 W; 45 S, 35 W •Desert – 22 N, 29 E •SGP – 35 N, 97 W •Inland Water – 48 N, 87 W •SE US (HMT-E) - 34 N, 81 W •Wetland surface - 18 S, 57 W •Finland – 60 N, 25 E

TOVS WORKING GROUP

GPM Land Surface Working Group (LSWG) Study Sites

(Some obtained from ITWG Land Working Group)

- 12 Targets/9 types of surfaces
- 1 Year: 1 July 06 30 June 07
- Assemble data sets:
 - Satellite
 - AMSR-E, SSMI, SSMIS, TMI, AMSU, WindSat
 - Ancillary satellite
 - ISCCP, PR/VIRS, CloudSat, CMORPH
 - Model
 - GDAS, LSM, JCSDA Emissivity
- Participants generate € "their way" but:
 - Must use only the data sets supplied
 - Make results freely accessible by others (post on web)
- Results to be stratified by site, cloud mask, rain, etc.

Study Web Page

http://cics.umd.edu/~rferraro/LSWG.html

This is the web page for the PMM Science Team Land Surface Characterization Working Group (LSWG). Details of the study are found here <u>LSWG Study Summary</u>. Meeting minutes from April 28, 2009 are found here <u>Latest Meeting Minutes</u>.

For more information, please contact Ralph Ferraro

Data Type	Readme	ASCII Data	Comments	Focal Point
GDAS	GDAS Readme	GDAS data	1 Degree Data	Fuzhong Weng
Emissivity Model				Furhong Weng
LSM Input	LSM Readme	LSM data	GLDAS 1 deg, 3 hr, using 4 LSMS: NOAH, CLM, VIC, MOSAIC	Christa Peters-Lidard
ISSCP Cloud Mask	ISCCP Readme	ISCCP Data	Data Set is compressed	Chuntao Liu
Colocated TMI, PR and VIRS	TMI/PR/VIRS Readme	TMI/PR/VIRS data	VIRS cloud mask with colocated TMI; Data Set is compressed	Chuntao Liu
AMSR-E	AMSR-E Readme	Jul06 Aug06 Sep06	AMSR-E, TMI, SSMI and SSMIS data sets are combined into monthly files	Sarah Finn
SSMI	SSMI Readme	Oct06 Nov06 Dec06	AMSR-E,TMI, SSMI and SSMIS data sets are combined into monthly files	Sarah Finn
SSMIS	SSMIS Readme	Jan07 Feb07 Mar07	AMSR-E, TMI, SSMI and SSMIS data sets are combined into monthly files	Sarah Finn
ТМІ	<u>TMI Readme</u>	Apr07 May07 Jun07	AMSR-E, TMI, SSMI and SSMIS data sets are combined into monthly files	<u>Sarah Finn</u>
CloudSat	CloudSat Readme	CloudSat Data	Data Set is compressed	Guosheng Liu

Emissivity Estimates Received

Algorithm	Sensor(s)	Targets	Algorithm Type
NESDIS (Boukabara)	AMSR-E; AMSU/MHS	All	1DVAR
GSFC (Wang & Skofronick-Jackson)	AMSU/MHS SSMIS	C3VP	Physical (remove atm.)
CICS (Wang/Gopalan)	AMSR-E; TMI	Amazon	Physical (remove atm.)
LSM/CRTM (Peters- Lidard/Harrison)	AMSR-E; AMSU SSM/I	All	Physical – surface from LSM, GDAS and CRTM
NRL (Turk/Li)	WindSat	All	Physical – surface from satellite, MLE
CNRS (Prigent)	AMSU; SSM/I	All	Physical (remove atm.)
Meteo-France (Karbou)	AMSU; SSM/I	All	Physical (remove atm.)

Some results...caveats

- Not truly an "apples to apples" comparison
 - Not all estimates used exactly the same set of satellites or our input data
 - Some estimates are 1 degree areal average some are center of the box
 - Some give exact observation time, some 12 hour increments, …
 - Did daily averages for all sensor types
- My inefficiencies in computer programming and database management
- Goal NOT trying to determine which estimate is the best, rather, where they are similar and where they are not

HMT-E Site – SSM/I

		PRIGENT								KARBOU						
		e19V	e19H	e22V	e37V	e37H	e85V	e85H	e19V	e19H	e22V	e37V	e37H	e85V	e85H	
HMT (ALL)	MEAN	0.955	0.935	0.965	0.941	0.924	0.929	0.913	0.956	0.938	0.957	0.949	0.935	0.941	0.925	
HMT (ALL)	STD	0.013	0.013	0.020	0.015	0.014	0.049	0.054	0.012	0.019	0.014	0.013	0.022	0.023	0.037	
HMT (No Rain)	MEAN	0.954	0.934	0.966	0.939	0.923	0.932	0.915	0.956	0.938	0.958	0.949	0.934	0.941	0.924	
HMT (No Rain)	STD	0.013	0.013	0.019	0.014	0.014	0.021	0.022	0.010	0.017	0.012	0.012	0.021	0.018	0.029	

- This is a site with annual cycle in vegetation, some winter snowfall
- All data
 - Similarity 19VH & 37VH
 - Prigent saturation @ 22V
 - Response to rain evident
- Rain free data
 - Data are in closer agreement, mean & Std.
 - Still see daily variations up to 5%

HMT-E Site – AMSU

			k	KARBOU			PETERS-LIDARD				BOUKABARA			
		e23	e31	e50	e89	e23	e31	e50	e89	e23	e31	e50	e89	
HMT (ALL)	MEAN	0.942	0.943	0.943	0.944	0.942	0.948	0.958	0.950	0.930	0.935	0.930	0.935	
HMT (ALL)	STD	0.012	0.011	0.016	0.028	0.012	0.010	0.008	0.003	0.010	0.010	0.011	0.011	
HMT (No Rain)	MEAN	0.941	0.942	0.945	0.951	0.944	0.950	0.959	0.950	0.931	0.936	0.931	0.936	
HMT (No Rain)	STD	0.012	0.011	0.013	0.011	0.011	0.010	0.007	0.001	0.010	0.009	0.011	0.011	

- All data
 - K and P-L similar at 23 and 31 GHz
 - B lower than K and P-L
 - Other differences noted
- Rain free data
 - Not much difference in
 P-L and B (and K, accept at 89 GHz)

1 Jun 2006-1 Jul 2007

Red impulses indicate 3-hourly CMORPH accumulated precipitation average

Emissivity ational TOVS Study Conference ific Grove, CA April 2010

C3VP Site – SSM/I

1	0		
	A	9	A
	1		
2			

		PRIGENT								KARBOU					
		e19V	e19H	e22V	e37V	e37H	e85V	e85H	e19V	e19H	e22V	e37V	e37H	e85V	e85H
C3VP(ALL)	MEAN	0.914	0.861	0.932	0.912	0.870	0.916	0.879	0.893	0.830	0.901	0.903	0.848	0.912	0.862
C3VP (ALL)	STD	0.020	0.027	0.030	0.022	0.031	0.026	0.044	0.062	0.113	0.062	0.057	0.122	0.053	0.118
C3VP (No Rain)	MEAN	0.924	0.861	0.939	0.914	0.867	0.906	0.868	0.891	0.809	0.896	0.893	0.825	0.897	0.837
C3VP (No Rain)	STD	0.031	0.032	0.034	0.031	0.039	0.049	0.060	0.058	0.101	0.059	0.059	0.113	0.066	0.117

- This is a site with long periods of snowcover and annual vegetation changes
- Snow cover evident in 37 and 85 GHz by P and K
- K tends to be lower and more variable – Great Lakes influence in my processing; needs to be redone correctly...

C3VP Site – AMSU

			ł	KARBOU			ETERS	-LIDAR	RD.	BOUKABARA			
		e23	e31	e50	e89	e23	e31	e50	e89	e23	e31	e50	e89
C3VP(ALL)	MEAN	0.830	0.839	0.866	0.888	0.946	0.952	0.959	0.944	0.932	0.936	0.921	0.915
C3VP (ALL)	STD	0.060	0.058	0.049	0.042	0.017	0.015	0.010	0.013	0.008	0.008	0.008	0.008
C3VP (No Rain)	MEAN	0.813	0.821	0.842	0.847	0.955	0.954	0.943	0.920	0.931	0.935	0.921	0.916
C3VP (No Rain)	STD	0.059	0.057	0.051	0.057	0.023	0.015	0.012	0.022	0.007	0.006	0.007	0.008

- Large variations between estimates
 - View angle handling?
 - B is N18 only
 - Water/Ice contamination in K
- B shows least variability
- Some issue with P-L 89 GHz

1 Jun 2006-1 Jul 2007

Red impulses indicate **3-hourly CMORPH** accumulated precipitation average

23V 23H Emissivity

Emissivity ational TOVS Study Conference -;ific Grove, CA April 2010

Summary and Future

- The advancement of precipitation over land in GPM-era must consider
 - Accurate surface characterization 6 200 GHz under all weather conditions
 - Understanding of the sensitivity of the retrievals over all surface types and frequency range
- PMM Science Team intercomparison study
 - Preliminary results indicate similarities and differences between the different methods
 - Early hope that they will all be "about the same" is likely not true we have a lot of work to do!
- Future
 - A lot more work to do we need your help!
 - How can ITWG work with IPWG and GPM communities?
 - Let's try to develop a joint emissivity model for 6 200 GHz under all weather conditions
 - Come to IPWG#5 Hamburg, Germany, 11-15 October 2010
 - Come to GPM algorithm team meeting May 2010, College Park, MD

 TOVS
 International Precipitation
 17th International TOVS Study Conference

 WORKING GROUP
 Working Group
 Pacific Grove, CA April 2010

Backup Slides

Further results not shown due to time constraints

Credits – Turk (JPL), Peters-Lidard (NASA), Boukabara (NOAA), J. Wang (NASA), N. Wang (ESSIC)

•6.9V: relatively small interannual Variability EXCEPT:

- •Finland in winter
- •C3VP in winter
- •SGP due to vegetation/lack of it
- •Wetlands in fall

WORKING GROUP IPWG 7-5

CGMS International Precipitation Working Group

•89V: highly variable for most sites

IRS Results – AMSU vs. AMSR-

Results courtesy of S. Boukabara/W. Chen

- •AMSR-E ~50 deg incidence angle, AMSU shown here between 40-60 deg.
- AMSU is also mixed polarization
- •Only 5 targets of AMSU data were made available to date

WURKING GIUUP ////

- •Similarities:
 - •Large annual cycle changes at C3VP and wetland (and magnitudes)
 - •Finland is clearer lower than other targets
- •Differences:
 - Water targets (mixed polarization?)

- •37 GHz or less
 - •Reasonable stability of ε over vegetated target
 - Cloud affects minimal
- •89 GHz

IPWG 20

INTERNATION

WORKING GROUP

- •Cloud and precipitation affects dramatic
- Similar values during clear conditions

International Precipitation

Working Group

Pacific Grove, CA April 2010

MIRS vs. CICS - Amazon

Results courtesy of S. Boukabara/W. Chen

Very limited data to compare at this time....Seems like reasonable agreement in ranges of values – clear sky

NASA – AMSU-B at C3VP

ASA

E89

E150

CEMS .

INTERNATIONAL

C3VP Comparison

C3VP Forward Modeling AMSU-A 31.4 GHz

Slide courtesy of Peters-Lidard, Harrison & Mocko

300

290

280

270

260 250

240

230

220

210

200

200

220

AMSU Tb (K)

INTERNATIONAL

26-29 Octobe

NASA/GSFC LIS-Catchment-RTM Tb simulation

Std-error (linear regression)	6.00K		
Std-error (linear regression)no snow	6.75K		
Std-error (linear regression)snow	6.69K		
Correlation	0.86		
Correlationno snow	0.86		
Correlationsnow	0.38		

LIS-Noah-CRTM Tb simulation

Std-error (linear regression)	5.68K
Std-error (linear regression)no snow	6.49K
Std-error (linear regression)snow	5.68K
Correlation	0.87
Correlationno snow	0.86
Correlationsnow	-0.70

International Precipitation 17th International TOVS Study Conference -Working Group PMM ScienceParamo Mareting - Apalt 2008 City, UT

26-29 October

WORKING GROUP

C3VP Forward Modeling AMSU-B 89 GHz

Slide courtesy of Peters-Lidard, Harrison & Mocko

NASA/GSFC LIS-Catchment-CRTM Tb simulation

Std-error (linear regression)	8.16K
Std-error (linear regression)no snow	2.58K
Std-error (linear regression)snow	13.58K
Correlation	0.82
Correlationno snow	0.92
Correlationsnow	0.75

LIS-Noah-CRTM Tb simulation

7.02K
3.15K
10.73K
0.87
0.94
0.80

- LIS-LSM lyr 1 soil temp-1 (K)
- LIS-LSM lyr 1 soil moisture (volumetric)

- ----- LIS-CRTM-simulated AMSU-B (MHS for NOAA-18) TB1 (89.0 GHz)
 - LIS-CRTM-simulated emissivity at AMSU-B (MHS for NOAA-18) TB1 (89.0 GHz)
 - US-LSM snow depth (m)

