## Information Content and Optimal Channel Selection for AIRS

#### Nadia Fourrié\*, Jean-Noël Thépaut

#### European Centre for Medium-range Weather Forecasts

\* NWP SAF visiting scientist program



## Presentation layout

- Background of the study
- Experimental framework
- Validation of the NESDIS NRT channel selection
  - Versus an "optimal" channel selection (Rodgers)
  - Versus a (constant) "optimally derived" channel selection
- Robustness of the selection to different inputs
  - Air-mass dependence
  - Background error covariance
- Conclusion



### Background of the study

- At day-1 after launch, AIRS data will be provided via NESDIS to the NWP community. For obvious technical reasons, only a reduced channel selection will be available in near real time.
- It is important to quantify the "loss" of information entailed by this reduced dataset and its impact on NWP
- Information content studies permit the evaluation (in a statistical sense) of the benefit of any new source of information on the quality of a given assimilation system
- Information content theory can help in the selection of channels judged as essential to maximise the impact of a new instrument



### Background of the study (ctd)

- The goal of the study is to compare the "efficiency" of the NESDIS NRT channel selection with alternative methods based on information content theory
- Rabier et al. (2002) have developed an iterative method based on Rodgers (1996) and have applied it to IASI.
- This method might give us some guidance on how to progressively extend the number of channels one wants to ingest in the assimilation system



## Experimental framework

- Atmospheric situations:
  - 108 (T, Q, O3) profiles extracted from the new 60-level ECMWF sampled database
    - 19 polar, 75 mid latitudes, 14 tropical
- NESDIS NRT simulated reduced set:
  - 228 channels
- Surface temperature is not addressed in the study:
  - Window channels excluded
    - 2378 → 1576
    - 228 → 186
  - Ts excluded from the control variable
- Background error covariance matrix
  - Operational ECMWF B matrix
    - Based on ensemble of analyses
- Observational error:
  - latest noise from UMBC



## Experimental framework (ct'd)

- Radiative transfer model:
  - RTAIRS (see Matricardi+Chevallier talk)
- Rodgers selection:
  - Maximise DFS (Degree of Freedom for Signal) or optimise ER (Entropy Reduction)
    - DFS = tr (I A/B)
    - $ER = -1/2\log 2[det(A/B)]$ 
      - Iterative process to select sequentially the best channel according to this criterion
- Constant selection:
  - Average selection based on the 108 realisations
- Diagnostics
  - Information content: study of eigenvalues and eigenvectors of B<sup>1/2</sup>.H<sup>t</sup>.R<sup>-1</sup>.H.B<sup>1/2</sup>
  - DFS: gain in information brought by the data
  - Linear 1D-Var performance



LW 15  $\mu m$  CO2 band



## H2O window + 9 $\mu$ m O3 band





 $6\text{-}7~\mu\text{m}$  H20 band



Shortwave 4.5-4.2 µm CO2 band









Constant selection





**NESDIS** selection

Constant selection



- NESDIS: 23.7 vs CONSTANT: 25.8 indep. pieces of information
- NESDIS : DFS=16.2 = 8.1 (T) + 6.5 (Q) + 1.6 (O3)
- Constant: DFS=18.2 = 9.2 (T) + 7.3 (Q) + 1.7 (O3)



STDEV











#### Is the NESDIS NRT robust to different air-masses?

![](_page_13_Figure_1.jpeg)

Even an optimised selection on polar air-masses applied to the same polar air-masses is merely comparable to NESDIS NRT selection

![](_page_13_Picture_3.jpeg)

# Robustness of the selection to the specification of the background error covariance matrix

- The current background error covariance matrix used at ECMWF only provide a climatology of short-range forecast errors
- On the other hand, previous information content studies have suggested that AIRS/IASI could resolve some of the small scale baroclinic structures that have been identified by sensitivity studies as being crucial to forecast error development (so called key analysis errors)
- Among other things (such as cloud correlated), these structures are sharp in vertical and horizontal
- It is therefore interesting to test the robustness of NESDIS NRT selection to cope with such detailed structures

![](_page_14_Picture_5.jpeg)

#### Key analysis error covariance matrix (one month of high resolution sensitivity experiment)

![](_page_15_Figure_1.jpeg)

(relatively) large errors in the troposphere (spuriously) large errors in the high stratosphere

![](_page_15_Picture_3.jpeg)

#### Key analysis error covariance matrix (one month of high resolution sensitivity experiment)

horizontal error correlations

![](_page_16_Figure_2.jpeg)

#### Impact of the background error covariance matrix on the channel selection (T only)

![](_page_17_Figure_1.jpeg)

#### LW 15 $\mu$ m CO2 band

H2O window + 9  $\mu m$  O3 band

![](_page_17_Figure_4.jpeg)

![](_page_17_Picture_5.jpeg)

## Impact of the background error covariance matrix on the channel selection (T only)

 $6\text{-}7~\mu\text{m}$  H20 band

![](_page_18_Figure_2.jpeg)

#### Shortwave 4.5-4.2 $\mu m$ CO2 band

![](_page_18_Figure_4.jpeg)

![](_page_18_Picture_5.jpeg)

## Robustness of the selection to the specification of the background error covariance matrix

![](_page_19_Figure_1.jpeg)

Superiority of a dedicated channel selection over NESDIS NRT...

But...

NESDIS NRT selection is still doing a good job!

![](_page_19_Picture_5.jpeg)

## Conclusions

- Information Content (IC) and channel selection tools provide some guidance to assess the expected impact of a new instrument
- These tools have been used to evaluate the quality of the NESDIS NRT channel selection versus a more "optimal" approach (sanity check!)

#### Limits due to linearity and cloud-free assumptions

- NESDIS NRT channel selection seems very reasonable for NWP applications (as measured by IC indices)
- NESDIS NRT channel selection is robust to air-masses under consideration
- NESDIS NRT channel selection is performing well with atmospheric key analysis errors
- ECMWF is fairly confident with this day-1 strategy
- Optimal channel selection probably remains superior for very specific applications:
  - Cloud detection
  - CO2 estimation,...

![](_page_20_Picture_11.jpeg)