Progress towards an assimilation strategy for AIRS at ECMWF

Tony McNally, N. Fourrié, M. Matricardi, JN. Thépaut*, P. Watts

- End-to-end 3D/4D VAR technical / science testing of day-1 system using NESDIS and ECMWF AIRS radiance simulations
- RTTOV(6M) extended to AIRS and compared to NESDIS / UMBC AIRS RT
- •Verify assimilation of NESDIS NRT selected channels in day-1 system (possible spectral EOF's later on)
- Detection of cloud-free channels within the AIRS sounding by pattern recognition
- Develop new radiance monitoring tools and bias correction strategy

Simulated AIRS radiance data is very important

- The NESDIS NRT simulations in BUFR have allowed "end-to-end" technical testing of our monitoring and assimilation systems
- This minimizes technical delays following launch (e.g. NOAA-16 implementation was tested pre-launch with simulated data and used operationally within 8 weeks!)
- ECMWF simulated AIRS radiances from "known" cloud conditions were used to train / verify our cloud detection algorithms

"Realism" of simulated cloudy AIRS radiances

NCEP AIRS-760

ECMWF AIRS-760

Observed HIRS-8

- Realism of the implied cloud signal in the simulated radiances is important to ensure studies are not too optimistic or too pessimistic regarding the likely NWP impact of AIRS
- This realism will depend on the occurrence of cloud in the NWP model and the cloud radiative properties assumed in the RT calculations

- End-to-end 3D/4D VAR technical / science testing of day-1 system using NESDIS and ECMWF AIRS radiance simulations
- RTTOV(6M) extended to AIRS and compared to NESDIS / UMBC AIRS RT
- •Verify assimilation of NESDIS NRT selected channels in day-1 system (possible spectral EOF's later on)
- Detection of cloud-free channels within the AIRS sounding by pattern recognition
- Develop new radiance monitoring tools and bias correction strategy

•Monitoring system for CO2

Radiative transfer model for AIRS

- RTTOV(6M) has been validated against LBL data
- Using NESDIS simulations RTTOV(6M) has implicitly been compared to the UMBC AIRS RT model.
- Dry temperature sounding channels generally display very good agreement. Yellow indicates better than 0.5 K
- See Matricardi+Chevallier talk

NESDIS-NRT minus EC-simulation in AIRS channel 139 (14.5 micron)

- End-to-end 3D/4D VAR technical / science testing of day-1 system using NESDIS and ECMWF AIRS radiance simulations
- RTTOV(6M) extended to AIRS and compared to NESDIS / UMBC AIRS RT
- •Verify assimilation of NESDIS NRT selected channels in day-1 system (possible spectral EOF's later on)
- Detection of cloud-free channels within the AIRS sounding by pattern recognition (see poster on cloud-detection)
- Develop new radiance monitoring tools and bias correction strategy

Channel selection and data compression for AIRS

- •Spectral compression using e.g. truncated EOF's is not considered sufficiently accurate or robust for "Day-1 AIRS NWP assimilation"
- •Thus a selected set of channels supplied in NRT by NOAA/NESDIS will be used at ECMWF
- •Despite being independent of any given NWP system, the performance of these NESDIS selected channels is generally not too different to that of an optimized channel set (see Thépaut+Fourrié talk)

- End-to-end 3D/4D VAR technical / science testing of day-1 system using NESDIS and ECMWF AIRS radiance simulations
- RTTOV(6M) extended to AIRS and compared to NESDIS / UMBC AIRS RT
- •Verify assimilation of NESDIS NRT selected channels in day-1 system (possible spectral EOF's later on)
- Detection of cloud-free channels within the AIRS sounding by pattern recognition
- Develop new radiance monitoring tools and bias correction strategy

New cloud detection algorithm for AIRS

- •Exploits NWP model accuracy (particularly in mid-upper trop constrained by AMSUA)
- •Aims at dynamically finding clear channels rather than completely clear locations
- Validated with simulated cloudy AIRS radiances (real data will be used if AQUA slips)
- •Extendable to IASI
 (See McNally + Watts poster)

Observed cloudy spectra and simulated clear-sky (NWP) spectra

Non-linear transformation to cloud-ranked channel space

Pattern recognition algorithm (currently digital filter used)

Cloud detection and channel use above clouds

Temperature weighting functions

- End-to-end 3D/4D VAR technical / science testing of day-1 system using NESDIS and ECMWF AIRS radiance simulations
- RTTOV(6M) extended to AIRS and compared to NESDIS / UMBC AIRS RT
- •Verify assimilation of NESDIS NRT selected channels in day-1 system (possible spectral EOF's later on)
- Detection of cloud-free channels within the AIRS sounding by pattern recognition (see poster on cloud-detection)
- •Develop new radiance monitoring tools and bias correction strategy

Quick-look monitoring of all AIRS channels (simulated Tb in clear and cloudy sky)

Monitoring of all AIRS channels (Observed minus simulated Tb in clear and cloudy sky)

Monitoring and continuous feedback

- End-to-end 3D/4D VAR technical / science testing of day-1 system using NESDIS and ECMWF AIRS radiance simulations
- RTTOV(6M) extended to AIRS and compared to NESDIS / UMBC AIRS RT
- •Verify assimilation of NESDIS NRT selected channels in day-1 system (possible spectral EOF's later on)
- Detection of cloud-free channels within the AIRS sounding by pattern recognition (see poster on cloud-detection)
- Develop new radiance monitoring tools and bias correction strategy

Why use AIRS to estimate CO₂?

•By sampling the IR spectrum at very high resolution (R=1200) we can measure radiation that is only dependent on temperature and the atmospheric CO₂ concentration (small groups of pure lines)

•If we have accurate temperature information (from the ECMWF analysis driven by AMSUA data) we can separate out the CO₂ signal.

•Instruments with coarse spectral resolution (e.g. HIRS) sample radiation that is a mixture of absorbing species (e.g. $CO_2 / N_2 0 / O_3$ and H_2O) and cannot resolve the CO_2

Key issues and limitations for CO₂

- We may have to average over long time periods (e.g. 1month) to reduce temperature uncertainty.
- Little or no near surface information on CO₂ (no contrast)
- We must employ transport models to link the upper level / total column measured to near surface sources /sinks of CO₂
- Robust cloud detection will be crucial

Hot news: RTTOV6(M) has been extended to handle variable CO2 (see Matricardi+Chevallier talk)

