

RTTOV development status

James Hocking, Roger Saunders, Peter Rayer, David Rundle, Pascal Brunel, Jérôme Vidot, Pascale Roquet, Marco Matricardi, Alan Geer, Cristina Lupu

ITSC-19, Jeju Island, March 2014

What is RTTOV?

Viewing and sun angles

Estimate of atmospheric state and surface parameters for observation point X

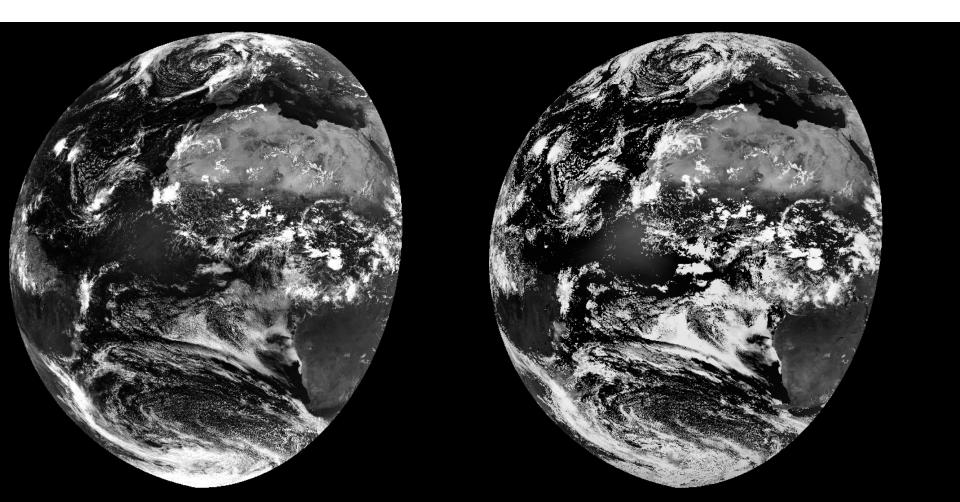
RT model for required sensor

Time ~1ms for 20 chans

Radiances for required satellite channels *y=H*(X) and optionally Jacobians as TL, AD, or K

$$\mathbf{H'} \equiv \frac{\partial \mathbf{y_i}}{\partial \mathbf{X_j}}$$

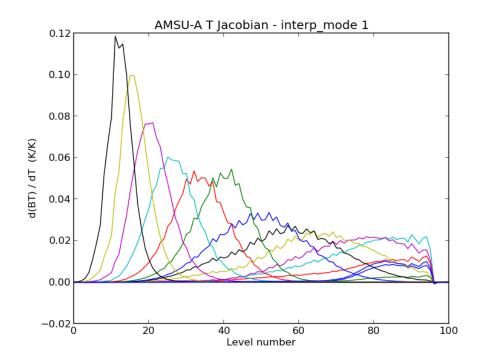
RTTOV v11.1 – released May 2013

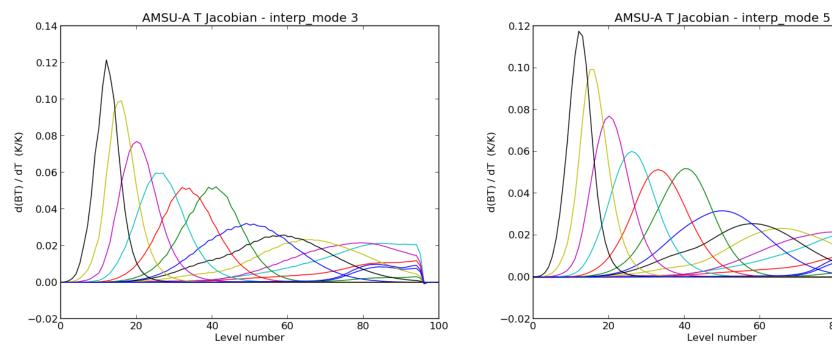

- VIS/NIR clear-sky (and simple cloudy) simulations
- Land surface reflectance (BRDF) atlas

VIS/NIR clear-sky/simple cloud

Simple cloud => input single CTP and cloud fraction Output is linear combination of clear-sky and cloud-top radiances, making some basic assumption about cloud top reflectivity.

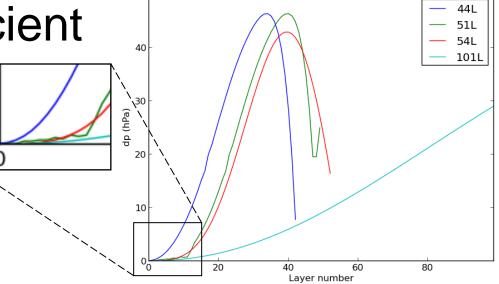
SEVIRI 0.6µm observations (left) and simulations (right)



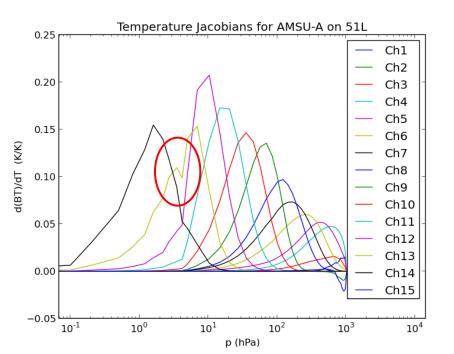


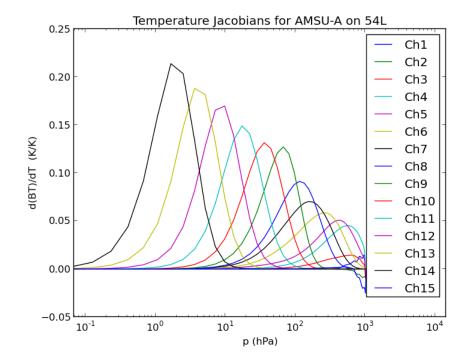
RTTOV v11.1 – released May 2013

- VIS/NIR clear-sky (and simple cloudy) simulations
- Land surface reflectance (BRDF) atlas
- NLTE bias correction (AIRS/CrIS/IASI)
- PC-RTTOV extended to cloudy profiles over sea
- IR scattering simulations:
 - Two new aerosol particle types (volcanic ash, Asian dust)
 - New parameterisation for ice clouds
 - Option to input scattering parameters explicitly
- New interpolation option


RTTOV v11.1 – released May 2013

- Option to treat surface as Lambertian for MW sensors
- SSU coefficients accounting for time-variation of CO2 cell pressure in the instrument
- Coefficients in HDF5 format
- Optimisation of K model for v7 predictor coefs
- Optimisation of IR emissivity atlas in speed and memory usage


New coefficient levels


 51L had extra levels added by hand: leads to features in Jacobians.

 New 54L derived from analytic formula: better resolution everywhere except ~1-10hPa.

Difference in pressure between consecutive levels

Latest coefficients – MW

- Liebe-MPM 89/92, no-Zeeman code with O2, N2, WV and optionally climatological O3
- ECMWF 83 profile set
- RTTOV-7 predictors on 54 levels
- Zeeman coefficients for SSMI/S and AMSU-A also available; there is on-going work on Zeeman coefs

New files:

- AMSU-A with shifted frequencies for channels 6-8
- GPM GMI
- Nimbus-7 SMMR

Latest coefficients - VIS/IR

- LBLRTM v12.2, AER v3.2, MT_CKD_2.5.2; ECMWF 83 profile set
- Coefficients on 54 levels; also 101L for hi-res IR sounders

New files:

- Solar-compatible files for many GEO and LEO sensors including: ABI, AHI, AVHRR, MODIS, MTSAT imager, SEVIRI, VIIRS.
- Updated v9 predictor hi-res IR sounder files (O3, CO2, CO, CH4, N2O)
- MTG-FCI, IASI-NG
- Nimbus-4 IRIS, SSU PMC-shift files (PMR coefs are in pipeline)
- MODIS and HIRS with shifted channels

HDF5 is becoming the preferred format for disseminating hi-res IR sounder coefficients.

RTTOV v11.2 – due May 2014

- Further improvement to interpolation
- FASTEM-5: improvements to treatment of azimuth angle
- Optimisation (speed) of K model for v8 and v9 predictor coefs
- Optimisation (speed and memory usage) for IR scattering simulations, especially with cloud (~20-30% faster and ~50% memory usage in direct/TL/AD/K)
- Optimisation (speed) for PC-RTTOV simulations
- Coefficient I/O more flexible
- Test suite profiles updated: now based on US76 standard atmospheres.
- Bug fixes.

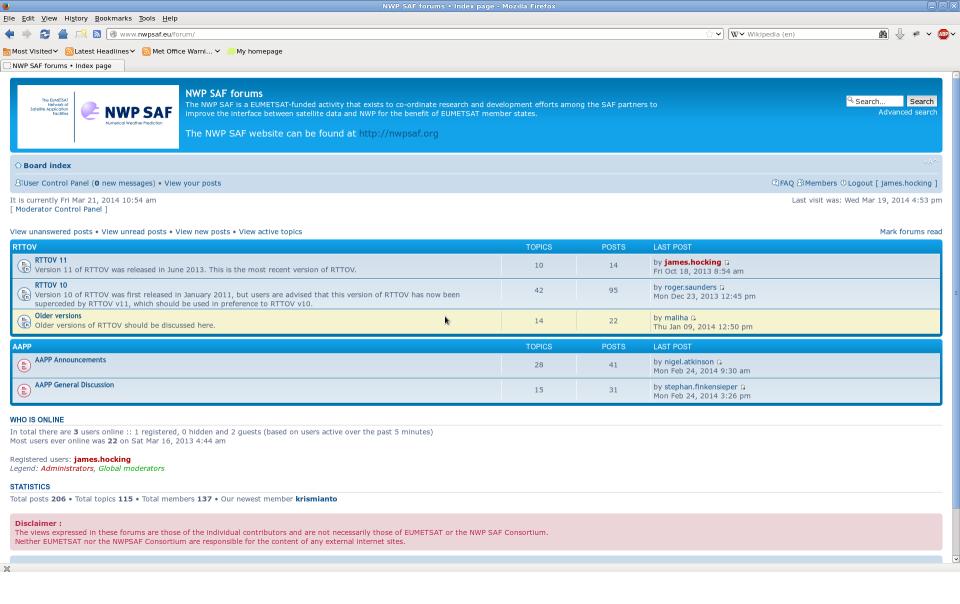
Met Office

RTTOV v12 – due end 2016

- Accurate VIS/NIR multiple-scattering model
- SO2 as optional trace gas
- Improved ice cloud parameterisation for IR scattering
- Updated IR sea surface emissivity model
- Improvements to IR emissivity atlas (view-angle correction)
- IR emissivity and BRDF atlases moved to HDF5 format
- Optimisation
- Retire old interpolation options
- Retire old IR ice cloud parameterisations based on effective diameter

NWP SAF website is being moved to new servers:

http://nwpsaf.eu/


Bug fixes are posted on the RTTOV v11 web page:

http://nwpsaf.eu/deliverables/rtm/rtm_rttov11.html

Web page dedicated to RTTOV v11 coefficients most of which are compatible with RTTOV v10:

http://nwpsaf.eu/deliverables/rtm/rttov11_coefficients.html

Feedback always welcome – including suggestions for new/modified content on the new site.

Thanks for your attention Questions?

New coefficient levels

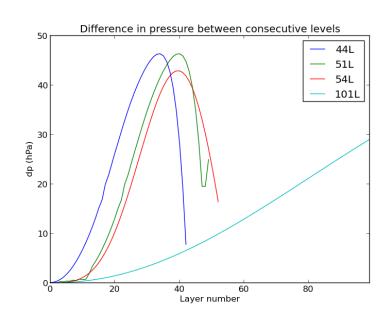


Table shows RMS differences of simulated AMSU-A BTs using 101L coefficients vs 51L/54L coefficients for 52 diverse profile set

Channel	51L coefs	54L coefs
1	0.102	0.064
2	0.063	0.042
3	0.091	0.065
4	0.047	0.031
5	0.026	0.019
6	0.035	0.029
7	0.032	0.030
8	0.026	0.024
9	0.058	0.047
10	0.093	0.056
11	0.138	0.100
12	0.147	0.147
13	0.069	0.220
14	0.125	0.237
15	0.131	0.086

Latest coefficients – VIS/IR

- LBLRTM v12.2, AER v3.2, MT CKD 2.5.2
- ECMWF 83 profile set
- RTTOV-7 predictors (O3) on 54 levels and on 101 levels for AIRS/IASI/CrIS/IASI-NG (IR only)
- RTTOV-8 predictors (O3, CO2) for SSU, HIRS, hi-res sounders (IR only)
- RTTOV-9 predictors (O3) on 54 levels for VIS/IR instruments (solar-compatible)
- RTTOV-9 predictors (O3, CO2, CO, CH4, N2O) on 101 levels for AIRS/IASI/IASI-NG, CrIS coefs forthcoming, (solar-compatible)