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Introduction  
The Infrared Atmospheric Sounding Interferometer (IASI) on-board the MetOp satellite 
belongs to a new generation of advanced infrared sounders and follows the launch of the 
Atmospheric InfraRed Sounder (AIRS) on-board the Aqua satellite in 2002. AIRS with 2378 
channels and IASI with 8461 channels provide information about atmospheric temperature 
and humidity with a far better spectral resolution compared to previous instruments such as 
the High Resolution InfraRed Sounder (HIRS).  
To reduce the significant computational costs, among  the 8461 IASI channels, about 300 
channels are monitored by most of the numerical weather prediction (NWP) centres. 
The channel reduction was processed by a channel selection based on clear profiles of 
temperature, humidity, ozone, carbon dioxide and surface temperature (Collard 2007 for IASI 
and Susskind et al 2003 for AIRS). 
These selections were satisfactory for the assimilation of clear observations which represent 
most of the assimilated radiances. However, the high correlation between cloud cover and 
meteorologically sensitive areas underlines the need to use infrared observations in presence 
of clouds (McNally 2002,  Fourrié and Rabier 2004). In order to progress in the use of cloud-
affected radiances and with the view to add the cloud variables (liquid water content, ice 
water content) in the state vector of the assimilation system, we investigated the potential 
benefit of a new channel selection in cloudy conditions. This work is in line with the HyMeX 
campaign (Hydrological cycle in the Mediterranean EXperiment) aiming at a better 
understanding, quantification and modelling of the hydrological cycle over the Mediterranean. 
The main source of information over sea is satellite data and about 80% of the radiances are 
cloudy. It is important to constrain the analysis in cloudy areas to improve forecast of heavy 
precipitation events. In this framework, the French convective scale model AROME 
(Application of Research to Operations at MEsoscale) is used to provide cloud profiles over 
the Mediterranean. 
Several information content studies have been evaluated to select the most useful channels in 
order to minimize the total loss of information for each state variable. Different techniques 
have been compared by Rabier et al (2002), who conclude that the channel selection method 
of Rodgers (1996,2000) is the most nearly optimal. This method was then applied to the 
selection of AIRS channels by Fourrié and Thépaut (2003) and IASI channels by Collard 
(2007). 
This study attempts to assess the relevance of the selection of the 366 IASI channels used 
operationally at the European Centre for Medium-Range Weather Forecasts (ECMWF) in the 
context of cloud-affected profiles. This selection (Collard and McNally 2009) called CM2009 
hereafter is evaluated in terms of Degrees of Freedom for Signal (DFS) to evaluate its 
capability to retrieve information about microphysical variables. Then, a subset of new 
channels selected on cloud profiles is added to the CM2009 selection. For this new selection, 
two methods considering different state vectors are evaluated by the DFS of each atmospheric 
component. After the choice of the best channel selection, its robustness and sensitivity to 
different parameters are quantified.  

 
 Experimental framework 
The general framework of this channel selection is the linear optimal estimation in the context 
of NWP. In the following section, we summarize the main elements presented at length by 
Rabier et al (2002). The IASI measurements are represented by the vector y and the 
atmospheric profiles of temperature, humidity, liquid water content and ice water content by 



the vector x. The observations are linked to the atmospheric state by an observation operator 
including vertical and horizontal interpolations in addition to a radiative transfer model: 

y=H(x)+ εO + εF 
where the measurement and the forward model errors εO and εF  are assumed to be gaussian 
noises with error covariance matrices O and F. We will denote R = O+F the resulting 
observation error covariance matrix. The error covariance matrix of the background state xb is 
denoted B. The radiative transfer equation is assumed to be weakly nonlinear in the vicinity of 
the background state, making the tangent linear assumption valid: 

H (x)=  H (xb)+ H(x-xb) 
where H is the tangent linear model of the radiative transfer model H. 
The best linear approximation of the true atmospheric state is given by:  

xa = xb + K(y-yb) 
with K=AHTR-1 the Kalman gain matrix  and  A=B-1+HT R-1 H the analysis-error covariance 
matrix.  
 
Channel selection methodology 
The channel selection that was chosen for this study is based on the methodology described 
by Rodgers (2000). The method consists in performing successive analyses considering only 
one channel at a time. The impact of the addition of single channels is evaluated by the DFS 
which is used as the figure of merit of the channel selection. The background-error covariance 
matrix is updated at the next step by the analysis-error covariance matrix previously 
calculated. In order to take into account the gain brought by the previously selected channels, 
this update of the B matrix is important. 
The starting point of the study is the CM2009 selection composed of 366 IASI channels. 
Firstly, the analysis-error covariance matrix A considering the 366 IASI channels of the 
CM2009 selection is evaluated. Then, new channels are selected updating the B matrix by the 
previously calculated A matrix. The atmospheric components for which information is 
expected are temperature, humidity, liquid water content (ql) and ice water content (qi). Two 
methods of selection were compared: using the four atmospheric variables in the state vector 
of the selection (SELC4) or focusing on cloud information considering only ql and qi 
(SELC2) in the state vector. 

 
Models and Data 
Profiles of temperature, humidity, liquid water content and ice water content were extracted 
from short-range forecasts (3-hour) of the convective scale model AROME WMED. AROME 
WMED is a research version of the operational model AROME dedicated to the HyMeX 
campaign. AROME is a limited area model with a 2.5 km grid based on non-hydrostatic 
equations (Seity et al 2011). Our study is performed over a period of 30 days (7 October 2010 
to 7 November 2010) on a domain centred on the Mediterranean Sea (-0.5°W to 17°E, 36°N 
to 44.5°N). 
In order to reduce the number of AROME profiles, a preselection was achieved considering 
each interpolated profile within a IASI field of view (FOV). The FOVs were chosen to focus 
on homogeneously covered scenes in both the observation and the forecast. A radiance 
analysis (Cayla 2001) of co-located AVHRR (Advanced Very High Resolution Radiometer) 
pixels inside each IASI FOV was used for this screening stage as described in Martinet et al 
2012. In order to cover most of the cloud variability and to limit the computation cost, 20 
profiles were chosen: 5 of ice opaque clouds, 5 of semi-transparent ice clouds, 5 of low liquid 
clouds and 5 of mixed phase clouds. 
The version 10 of the fast radiative transfer model RTTOV (Hocking et al, 2010) has been 
used for this study to compute the jacobian matrix. Profiles of liquid water content, ice water 
content and cloud fraction are provided to the advanced interface RTTOVCLD for a better 
modelling of clouds with possibility of multi-layer clouds and two cloud types per layer. 



The measurement-error covariance matrix O was constructed with the values of the 
instrumental noise provided by CNES. These values are valid at a temperature of 280 K and 
are converted at the scene temperature for each wave number and each profile. A constant 
error is added to take into account the radiative transfer model error. We chose a value of 0.2 
K for liquid cloud profiles which are assumed to be better simulated and 0.5 K for ice clouds 
and multiphase clouds.  
As we are interested in a channel selection in cloudy conditions, a specific B matrix has been 
computed. The background-error statistics were derived from an AROME ensemble 
assimilation, that considers explicit observation perturbations and implicit background 
perturbations through the cycling, coupled with the operational ensemble assimilation at 
global scale (Desroziers et al 2008). They were calculated from a set of 18 convective cases 
observed during the months of July, August and September 2009. Geographical cloud masks 
(Montmerle et Berre 2010), based on values of simulated vertically integrated cloud contents, 
were then applied to differences of background perturbations in order to gather data from 
which the statistics are performed. As in Michel et al (2011), the multivariate formalism 
proposed by Berre (2000)  has been extended to ql and qi, allowing couplings with forecast 
errors of temperature and specific humidity. The standard deviations for this matrix are shown 
in figure 1. 
 

 

 
Fig 1: Standard deviations of temperature, humidity, liquid water content, ice water 
content taken from the AROME B matrix computed in cloudy conditions. 
 
 

Channel Selection Results 
For each of the 20 profiles, 200 channels were added considering different variables 

in the state vector. The two channel selections will be evaluated comparing a ‘constant’ 
selection instead of an optimal channel selection for each profile. The ‘constant’ selection is 
an average of 20 optimal selections. At each channel picked by the channel selection, a rank 



from 1 to 200 is given corresponding to its rank in the iterative selection process. Finally, a 
‘global’ set of 200 channels is chosen considering the channels with the lowest average rank. 
Another method would be to choose the 200 channels which are picked the most often. The 
selection based on the average rank was preferred because it spreads the channels all over the 
spectrum whereas the second option favours some specific spectral regions. Figure 2 shows 
the two global selections considering the four atmospheric variables in the state vector 
(SELC4) or the cloud variables only (SELC2). 

 

 
 

Fig 2: Location of the selected channels averaged over all the profiles. The CM2009 
selection of ECMWF is represented with black points and the new channels in red 
points. The selection considering ql and qi in the state vector (top) is compared to the 
selection considering the four variables in the state vector (bottom). 

 
The number of channels selected in the long-wave part of the water vapour band  is higher for 
the SELC4 selection. When focusing on ql and qi, the surface window channels sensitive to 
the cloud top are preferred. This means that even if the four variables are introduced in the 
state vector of the selection, the DFS value is mainly dominated by temperature and humidity. 
However, the channels selected for temperature and humidity may bring information about 
the microphysical variables.  
Table 1 compares the values of DFS for each variable and each channel selection. Each 
selection method is evaluated by the percentage of DFS explained by the subset of channels 
compared to the maximal values of DFS considering all the 8461 channels. Firstly, it is worth 



noting that even with 8461 channels, the extraction of information is dominated by 
temperature and humidity. The DFS for temperature represents 50% of the total DFS, 
humidity 33%, ice water content 15% and liquid water content only 2%. Despite the 
predominance of temperature and humidity, the results show a potential gain in information 
about ice water content. Secondly, the experiment shows the robustness of the channel 
selection algorithm employed by Collard (2007) to provide the main part of the CM2009 
selection. Despite the fact that this channel selection was developed on clear profiles, 70% of 
the total DFS calculated with all the channels is reached. The DFS is particularly high for 
temperature, humidity and ice water content (70%) and reasonable for liquid water content 
(60%). Finally, we can note that the addition of 200 channels improves the results but the 
impact on the total DFS is better with the SELC4 approach (gain of 5% instead of 3%). These 
improvements show that temperature and water vapour channels are informative not only for 
temperature and humidity but also for liquid and ice water contents. This is certainly due to 
nonlinearity in the radiative-transfer coupling temperature and humidity jacobians with ql an 
qi variables but also to the coupling between humidity and microphysical variables in the B 
matrix. Both approaches were compared with the standard deviations of analysis-errors 
(diagonal elements of the analysis-error covariance matrix A). Almost no difference was 
observed to favour one method over the other. 
 

Table1: Values of Degrees of Freedom for Signal (DFS) for both selection 
methods and for the CM2009 selection. The percentage of available DFS is 
indicated. 

 
Number of 
Channels 

Experiment Temperature Humidity Liquid Water 
Content 

Ice Water 
Content 

Total 

366 CM2009 4.11 (68%) 2.79(69%) 0.17(59%) 1.45(76%) 8.52(70%) 
566  SELC2 

(ql,qi) 
4.24(71%) 2.93(73%) 0.20(66%) 1.59(84%) 8.95(73%) 

566 SELC4 
(T,q,ql,qi) 

4.41(73%) 3.08(76%) 0.19(63%) 1.54(81%) 9.22(75%) 

8461 All channels 6.00 4.04 0.30 1.90 12.24 
 

Dependence of the selection to the cloud phase 
The selections previously described were obtained averaging the selections over all the 
profiles. A good channel selection must be usable for different cloud types in an operational 
context. The different channel selections after an averaging over one cloud type are shown in 
figure 3 considering the SELC4 (left panel) and SELC2 (right panel) selections. The 
selections adapted to each cloud type are relatively close to the one averaged over all the 
different cloud scenes except for liquid clouds in the context of the SELC2 method. In fact, 
when temperature and humidity are not included in the state vector of the selection, water 
vapour channels are not chosen any more when concentrating on liquid clouds because of 
jacobians peaking in the mid troposphere. The ‘global’ selection derived from the SELC4 
method shares about 66% of its channels with each cloud type dedicated channel selection 
whereas the SELC2 method shares 53% of its channels. 
This study has proved the SELC4 method to be more robust considering different cloud 
phases. In the view of operational assimilation where both clear scenes and cloudy scenes are 
mixed and considering the computation cost of the two methods, SELC4 seems to be a good 
compromise. 
Another question was investigated: What happens to the SELC4 selection if it is based on a 
cloud type and applied to a different one ? A cloud type dedicated channel selection provides 
better DFS for each air mass than the global selection averaged over all the cloud types but 
the gain is weak (around 1 or 2%). The DFS obtained when applying a cloud type dedicated 
channel selection to a different one is similar to the one obtained with the ‘global’ selection. 
Altogether, the SELC4 selection seems to be insensitive to the cloud-type category. 
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Fig 3: Location of the selected channels depending on the cloud phase. From top to 
bottom: averaged over all the profiles, only liquid cloud profiles, semi-transparent 
clouds, opaque clouds and mixed phase clouds. 
 
Figure 4 shows the evolution of the DFS values with respect to the number of selected 
channels for each variable. For temperature, humidity (left panel) and liquid water content 
(right panel),  the selection of 566 channels seems sufficient to reach the DFS saturation. For 
ice water content, the asymptotic value of the DFS would be reached from using at least up to 
2000 channels but the selection of 566 channels explains about 80% of the maximum value of 
the ice water content DFS.  

 
 
Fig 4: Evolution of the degrees of freedom for signal (DFS) for the global selection 
SELC4 with respect to the number of selected channels, averaged over the 20 
profiles. 
 
It is also interesting to illustrate the variation of the reduction analysis when selecting a 
different number of channels. For that purpose, we examine the standard deviations of 



background errors and analysis errors for temperature, humidity, liquid water content and ice 
water content averaged over each cloud type (figure 5). 
               Liquid Clouds                            Ice Clouds                                  Mixed Phase Clouds 

 

 

 
Fig 5: Analysis-Error Standard Deviations for each cloud type: liquid clouds in black lines, ice 

clouds in blue lines, mixed phase clouds in red lines. For each cloud type, the analysis-error 
standard deviations obtained with the new selection of 566 channels (solid line) is compared 
to the ones obtained with the CM2009 (dash dot line) selection of 366 channels and the best 
performance using the 8461 channels (dotted line). 
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Fig 5 (continued): results for ice water content. 

 
For temperature and humidity, the performances of the CM2009 and the SELC4 selections are 
equivalent. For ice water content and humidity, the new selection of 566 channels 
outperforms the CM2009 selection of 366 channels in terms of analysis-reduction error. It is 
interesting to note that the more transparent the cloud is, the highest the improvement of the 
analysis over the background is. As mixed phase clouds are mainly represented by opaque 
clouds with an ice cloud layer over a liquid cloud layer, they bring little information about 
temperature and humidity. The improvement of the analysis over the background is better 
with ice clouds than mixed-phase clouds because the ice cloud set was divided between 
opaque and semi-transparent clouds. 
Liquid clouds which are located in the low troposphere make possible the improvement of the 
background errors through the entire atmospheric column. The improvement of the 
temperature background error is decreased by almost 0.2 K around 800 hPa where liquid 
clouds are mainly located. In the same way, the reduction of ice water content analysis error is 
performed best around 400 hPa where most of the selected ice clouds peak. 
The use of all the 8461 channels reduces the temperature analysis error of about 0.1 K in the 
stratosphere with a maximum of 0.43 K for the first two levels easily explained by the large 
values of background errors in the stratosphere. The reduction is less significant for the 
troposphere (about 0.02 K). An improvement in the other analysed variables is also observed 
but the loss of information content seems reasonable. The results of the new selection are very 
comparable with the all channel analysis in terms of linear 1D-Var retrieval error. 
We conclude that despite the loss of information content expected when using a sample of the 
total number of IASI channels, the new channel selection provides reasonable performance. 
 

 
Robustness of the selection to the optical paramete r parameterizations 
in RTTOV 
 
In the radiative transfer model RTTOV, the ice cloud optical parameters are parameterized as 
a function of the effective diameter of the size distribution. Consequently, for ice clouds the 
user must choose what assumption to use to parameterize the effective diameter and must also 
specify which shape is to be used for the ice crystals since optical parameters are available for 
hexagonal ice crystals and ice aggregates (Faijan et al 2012). Each parameterization was 
tested for the SELC4 channel selection. Figure 6 shows the selection with each 
parameterization (left panel) assuming hexagonal ice crystals. The right panel shows the same 
comparison but assuming ice aggregates instead of ice crystals. Almost 82 % of the selected 



channels are common to the different parameterizations. However, this number is turned 
down to  63 % when comparing a given parameterization applied to the two crystal shapes 
(hexagonal or aggregates). In figure 6, we can notice that much more window channels are 
selected with the aggregate shape. The variation of the channel selection is thus more 
sensitive to the ice crystal shape than the ice parameterization. This difference with the two 
ice shapes is attenuated considering the SELC4 method because the selection is dominated by 
temperature and humidity. When considering only liquid water content and ice water content 
in the state vector, the difference between the channel selections with different ice shapes is 
emphasized. 
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Fig 6: Location of the selected channels depending on the RTTOV parameterization 
for hexagonal ice crystals (left panel) and aggregate ice crystals (right panel). 
 
 
Conclusions  
In this study, we evaluated the optimality of the IASI selection (CM2009) used operationally 
at ECMWF in the context of cloud-affected profiles. This selection has been performed by 
Collard 2007 on clear atmospheric profiles representative of standard atmospheres. The 
ECMWF selection has been evaluated on cloud profiles of temperature, humidity, liquid 
water content and ice water content extracted from short-range forecasts of the operational 
convective scale model AROME. It was first shown that the CM2009 selection of 366  
channels is able to reach about 70% of the total information that would be gained using all of 
the 8461 channels. It was then decided to add about 200 channels to the CM2009 selection 
but chosen specifically on cloudy conditions. An iterative method following Rodgers (2000) 
was used to evaluate two selection methods considering different state vector. The first 
method SELC4 considers four variables which are temperature, humidity, liquid water 
content and ice water content in the state vector of the selection whereas SELC2 considers 
only liquid water content and ice water content.  Even if the two ‘global’ selections share only 
60 channels of the 200 selected channels, they lead to similar results in terms of DFS and 
reduction of analysis-errors. However, the SELC4 selection is slightly better considering the 
total DFS of the four atmospheric variables and it is more robust with respect to the cloud 



type. The channel selections dedicated to each cloud type are quite similar with the ‘global’ 
SELC4 selection and the impact of applying a cloud type dedicated channel selection to a 
different one is negligible. 
The impact of the ice parameterization in the radiative transfer model was also studied. It was 
shown that the channel selection is more sensitive to the ice crystal shape (hexagonal or 
aggregates) than the parameterization scheme itself. 
The loss of information considering only 566 channels was quantified comparing the 
analysis-error reduction with an ‘all channel’ retrieval. Even if an improvement of the 
analysis over the background is observed with the 8461 channels the new selection performs 
reasonably well. 
This study is limited by the optimal linear estimation theory. In the future, the limitations of 
the study because of the non-linearity of the observation operator will be investigated.  
The robustness of the selection with different air-mass types will also be studied. Cloud 
profiles representative of tropical, polar or mid-latitude air-mass types from a global NWP 
model will be used to perform the same channel selection and evaluate its consistency with 
our selection on Mediterranean profiles. 
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