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Abstract

Presently, a variety of satellite observations have being assimilated in Chinese GRAPES. However,
it is mainly the satellite measurement on the clear atmosphere that has been focused on. Studies are
ongoing to explore how to use the satellite observations in cloudy and rainy areas. The rapid radiative
transfer model is the observation operator in radiance data assimilation system. The simulation of
satellite observations in cloudy and rainy areas in the rapid radiative transfer model is a basic, also the
key issue to use the satellite data affected by cloud and precipitation.

Study and comparison of simulation of satellite microwave observations in cloudy and rainy areas
are carried out in this paper by using both RTTOV and CRTM, two rapid radiative transfer models
being developed in UK Meteor Office and US JCSDA, respectively. With the hydrometeors from
WRF forecast as input, the radiative effects of hydrometeors on the simulation of AMSUA/B
microwave satellite observations are investigated. Preliminary results show that the response function
and the simulation of satellite brightness temperature for RTTOV and CRTM present almost the same
characteristics, but with difference in magnitude. The response functions of hydrometeors obtained
from Jacobin correspond well with the distribution of hydrometeors. The magnitude of CRTM is larger
than that of RTTOV. For AMSUA, the radiative effect of cloud and rain increases the simulated
brightness temperature, especially on those window channels with low frequency. The ice and snow
decreases the brightness temperature simulation of satellite observations. For AMSUB, hydrometeors
mainly decrease the simulated brightness temperature. The result of CRTM is also larger than that of
RTTOV. In addition, graupel has great effect on the simulation of AMSUB satellite observations.

1 Introduction

A variety of satellite observations have being assimilated in most NWP centers. What is more, the
use of satellite data greatly improves the accuracy of numerical forecast. However, only a few percent
of satellite data are really used presently. It is shown by the ECMWF statistics that more than 97%
satellite observations are discarded by the data assimilation system. One of the main factors is the
satellite data is affected by could and precipitation. Large uncertainties and strong non-linearity remain
in many of the physical parameterizations, particularly those associated with moist convection and the
radiative effects of clouds, utilized in all of forecast, radiative transfer model and data assimilation
scheme. It makes the assimilation of satellite data affected by cloud and precipitation a very difficult
problem.

With the development of physical parameterization scheme, especially the inclusion of radiative
effect of hydrometeor particles in RTTOV and CRTM, two rapid radiative transfer models being
developed in UK Meteor Office and US JCSDA, respectively, more and more study is carried out to
explore how to use the satellite data in cloudy and rainy areas. The simulation of satellite observations
affect by cloud and precipitation in the rapid radiative transfer model is a basic, also the key issue.



The study and comparison of simulation of satellite microwave observations in cloudy and rainy
areas are presented in this paper by using both RTTOV and CRTM. The radiative transfer models and
methodology are introduced in section 2. The influence of hydrometeors on the simulation of satellite
brightness temperature and the statistics of bias are given in section 3 and 4, respectively. The final
section is a brief conclusion and discussion.

2 The radiative transfer models and methodology
2.1 The radiative transfer models

In the radiative transfer model RTTOV, the cloud package for infrared and microwave radiances are
completely different. The scattering effects for the former are parameterized while it is treated
explicitly in an individual interface, known as RTTOV-SCATT. The scattering effects of
hydrometeors at microwave frequencies are computed using the delta-Eddington approximation. It
uses a two-independent column approximation. The clear-air RTTOV is called from within
RTTOV-SCATT and returns the brightness temperature of the clear sky column. Then
RTTOV-SCATT computes the cloudy or rainy brightness temperature. The total brightness
temperature is produced by combine linearly the two independent columns.

The Community Radiative Transfer Model (CRTM) is being developed currently in the Joint Center
for Satellite Data Assimilation (JCSDA) USA. It is designed to make use of satellite data under all
weather conditions by including scattering and emission from the earth’s atmosphere. The scattering
effects of cloud and precipitation particles are all based on Mie theory. It is the same as that of
RTTOV for microwave frequencies. But CRTM uses the common interface for the clear and cloudy or
rainy conditions.
2.2Methodology

There is a need of hydrometeors information for the radiative transfer model to do the simulation of
microwave radiances scattered by cloud and precipitation. It is provided by the forecast of WRF model.
The hydrometeors include cloud water, rain water, ice, snow and graupel. The total integrated
hydrometeors output from WRF model for the typhoon case studied in this paper is shown in Fig. 1.

The hydrometeor inputs for RTTOV are cloud liquid water, cloud ice water, rain flux, snow flux
and cloud cover. The cloud cover is derived from the relative humidity:

f—1
N = (ﬁ)
Where, f is the relative humidity. f, is the threshold of relative humidity that is the function of height.
It takes 0.9, 0.5, 0.6 and 0.5 for under 600m, 600-1500m, 1500-2500m and above 2500m, respectively.
b is a constant. Generally it is 2.

The input parameters for CRTM are cloud, rain, ice, snow, graupel profiles, effective radius and
effective variance. The effective radius for cloud, rain, ice, snow and graupel are taken as 15, 200,
200, 600 and 600, respectively. At present, the effective variance is a constant in CRTM.

3 The influence of hydrometeors on the simulation of microwave satellite
brightness temperature

The observation and simulated brightness temperature by using RTTOV and CRTM for AMSUA/B
channel 1 are presented in Fig. 2 and Fig. 3, respectively. It could be seen that there exists large bias
between the observation and simulated brightness temperature without hydrometeors. The inclusion of
the radiative effects of hydrometeors in the rapid radiative transfer model makes the simulation match
the observation closely. The use of 5 kinds of hydrometeor in CRTM decreases greatly the simulated



brightness temperature in typhoon core area that is also obvious in observation.
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Fig.l The total integrated hydrometeors output from WRF model. unit: kg m (a: cloud:; b: rain; c: ice; d: snow; e: graupel)
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Fig. 2 Observation and RTTOV simulated bright temperature for AMSUA/B channel 1 (a: AMSUA observation; b:
AMSUA simulation with 4 kinds hydrometeor; c: AMSUA simulation without hydrometeor; d: AMSUB observation; e:
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Fig. 3 CRTM simulated bright temperature for AMSUA/B channel 1 (a: AMSUA simulation without hydrometeor; b:
AMSUA simulation with 4 kinds hydrometeor; c: AMSUA simulation with 5 kinds hydrometeor; d: AMSUB simulation
without hydrometeor; e: AMSUB simulation with 4 kinds hydrometeor; f: AMSUB simulation with 5 kinds hydrometeor)
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Fig. 4 AMSUA/B response function of hydrometeors in typhoon centre area obtained from RTTOV Jacobian model. (a. b.
c. d: AMSUAcloud. ice. rain. snow, e. f. g. h: AMSUB cloud. ice. rain. snow)

4 The analysis and comparison of the simulated brightness temperature bias
4.1 The response functions of hydrometeors

The response functions of hydrometeors in typhoon centre area obtained from RTTOV and CRTM
Jacobian models are given in Fig. 4 and Fig. 5, respectively. It could be found that the response
functions of hydrometeors of RTTOV and CRTM present almost the same characteristics. It is
corresponded well with the distribution of hydrometeors. The response functions of cloud and rain
water concentrate on the lower and middle levels and that of ice and snow locate on the middle and
higher levels. It is noticed that the response functions of cloud, ice and rain of CRTM for AMSUA are
all larger than that of RTTQOV, especially the result of ice water. For AMSUB, just the response
function of cloud is a little larger than that of RTTOV.
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Fig.5 AMSUA/B response function of hydrometeors in typhoon centre area obtained from CRTM Jacobian model. (a. b.

¢. d: AMSUAcloud. ice. rain. snow, e. f. g. h: AMSUB cloud. ice. rain. snow)

4.2 The simulated brightness temperature bias

Fig. 6 is the area average of simulated brightness temperature bias between the simulation with and
without hydrometeors for AMSUA/B. The tag ice*10 stands for the result of ice is multiplied by 10.
Both the results of RTTOV and CRTM show that the radiative effect of all hydrometeors mainly
increase the simulated brightness temperature in AMSUA low frequency channels 1-3 and decrease
the simulated temperature in other AMSUA and all AMSUB channels. The maximum increment is in
AMSUA channel 2 and the minimum decrement is in AMSUB channel 2. Cloud water mainly
contributes to the increment of brightness temperature in AMSUA 1-3, 15 and AMSUB 1. Rain water
makes the same contribution as cloud in AMSU-A channels with low frequency and has an opposite
effect in AMSUA channel 15 and AMSUB channel 1. Ice, show and graupel bring about the
decrement of simulated brightness temperature in almost all AMSUA and AMSUB channels. The
effects of snow and graupel are much obvious than that of ice. The magnitude of simulated brightness



temperature bias of CRTM is lager than that of RTTOV, especially in AMSUA channels 1-3.
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Fig. 6 Area average of simulated brightness temperature bias between the simulation with and without hydrometeors for
AMSUA/B (a:RTTOV; b:CRTM)

4.3 The simulated brightness temperature RMSE

The Area average of simulated brightness temperature RMSE between the simulation with and
without hydrometeors for AMSUA/B is shown in Fig. 7. It could be seen that the radiative effect of
hydrometeor particles will bring about the simulated brightness temperature RMSE for AMSUA
channels 1-6, 15 and AMSUB all channels. It is much obvious for AMSUA channels 1-5, 15 and
AMSUB channels 1-2. The largest RMSE is all in channel 2 for both AMSUA and AMSUB when 4
kinds of hydrometeor, that is cloud, rain, ice and snow, are considered. Graupel is included in CRTM.
It could be found that it contributes greatly to the RMSE of AMSUA channels 4-5 and AMSUB
channels 1-3.

5 Conclusion and discussion
Study and comparison of simulation of satellite microwave observations in cloudy and rainy areas
are presented in this talk. The conclusion and discussion are:

1) The inclusion of radiative effects of hydrometeors plays an important role in the simulation of
satellite microwave observations in cloudy and rainy areas. The response function and the simulation
of satellite brightness temperature for RTTOV and CRTM present almost the same characteristics, but
with difference in magnitude.

2) The response functions of hydrometeors correspond well with the distribution of hydrometeors.



The magnitudes are slightly different between two fast radiative transfer models. It is suggested that
Jacobian intercomparison of radiative transfer model should be carried out to figure out the
uncertainties for hydrometeors.
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Fig. 7 Area average of simulated brightness temperature RMSE between the simulation with and without hydrometeors for
AMSUA/B (a:RTTOV; b:CRTM)

3) The radiative effect of hydrometeors will bring about the bias of simulation of brightness
temperature for AMSUA channels 1-6, 15 and AMSUB all channels. The magnitude of CRTM is lager
than that of RTTOV.

4) Graupel plays an important role in the simulation of satellite microwave observation for certain
channels. Its effect is taken in the radiative transfer model CRTM presently.
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