

A Variational Approach to NWP Preprocessing and Quality Control

K. Garrett¹, S.-A. Boukabara², Q. Liu³

18th International TOVS Study Conference March 23, 2012

Toulouse, France

1. Riverside Technology, Inc 2. Joint Center for Satellite Data Assimilation 3. University of Maryland, College Park

Motivation

GDAS Analysis 23 GHz Emissivity and Tskin

Outline

- Physical algorithm (1DVAR) for microwave sensors (MiRS)
- MiRS applies to imagers, sounders, combination
- Cost to extend to new sensors greatly reduced
- MiRS uses the CRTM as forward operator (leverage)
- Applicable on all surfaces and in all-weather conditions
- Operational for N18, N19, Metop-A and F16/F18 SSMI/S

On-going / Future:

- Extension operations to Metop-B, NPP/ATMS and Megha-Tropiques (MADRAS and SAPHIR)
- Get ready for the JPSS and GPM sensors.
- Extend MiRS to Infrared Remote Sensing (CRTM is already valid)

The 1DVAR Algorithm

Climatology (Retrieval Mode)

Matrix B

NoData

OC fai

Preprocessor QC

- Convergence is reached everywhere: all surfaces, all weather conditions including precipitating, icy conditions
- A radiometric solution (whole state vector) is found even when precip/ice present. With CRTM physical constraints.

$$\rho^2 = (\mathbf{Y}^m - \mathbf{Y}(\mathbf{X}))^{\mathbf{I}} \times \mathbf{E}^{-1} \times (\mathbf{Y}^m - \mathbf{Y}(\mathbf{X}))$$

Previous version (1 attempt) (assume non-scattering atmosphere)

MIRS N18 EDR Chi Square 2008-04-02 Asc (V1071)

Current version (2 attempts) (assume scattering from precip)

MIRS N18 EDR Chi Square 2008-06-08 Asc (V1316)

RIVERSIDE global science solutions

PTWENT OF

Preprocessor-CLW

Preprocessor-Emissivity

CPC Figures courtesy http://www.cpc.necp.noaa.gov

THENT OF

RIVERSIDE

SIATTON,

Assimilation Impact

MIRS N18 Liquid Water Path (mm) 2012-03-06 Des (V2921)

sing MiRS retrieved CLW

Assimilation Impact (O-B)

APPARENT OF DO

RIVERSIDE global science solutions

StATTOWN.

Assimilation Impact (O-B)

ARONTA ON

RIVERSIDE global science solutions

StATTOWN.

- MiRS is a generic retrieval/assimilation system (N18, N19, Metop-A, DMSP F16/18 SSMIS)
- In retrieval mode, MiRS can be used as an NWP (assimilation) preprocessor
- MiRS LWP has shown to produce reasonable O-B (improvement over using guess fields)
- Future work will include investigating the use of other QC metrics and retrieved fields to filter/parameterize DA
- For more detailed information about the MiRS project, visit: mirs.nesdis.noaa.gov (more validation data, publication list and software package)

BACKUP SLIDES

ATMS Impact Experiment

The 1DVAR Algorithm

Cost Function to Minimize:

 $J(X) = \left\lfloor \frac{1}{2} (X - X_0)^T \times B^{-1} \times (X - X_0) \right\rfloor + \left\lfloor \frac{1}{2} (X - X_0)^T \times B^{-1} \times (X - X_0) \right\rfloor + \left\lfloor \frac{1}{2} (X - X_0)^T \times B^{-1} \times (X - X_0) \right\rfloor + \left\lfloor \frac{1}{2} (X - X_0)^T \times B^{-1} \times (X - X_0) \right\rfloor + \left\lfloor \frac{1}{2} (X - X_0)^T \times B^{-1} \times (X - X_0) \right\rfloor + \left\lfloor \frac{1}{2} (X - X_0)^T \times B^{-1} \times (X - X_0) \right\rfloor + \left\lfloor \frac{1}{2} (X - X_0)^T \times B^{-1} \times (X - X_0) \right\rfloor + \left\lfloor \frac{1}{2} (X - X_0)^T \times B^{-1} \times (X - X_0) \right\rfloor + \left\lfloor \frac{1}{2} (X - X_0)^T \times B^{-1} \times (X - X_0) \right\rfloor + \left\lfloor \frac{1}{2} (X - X_0)^T \times B^{-1} \times (X - X_0) \right\rfloor + \left\lfloor \frac{1}{2} (X - X_0)^T \times B^{-1} \times (X - X_0) \right\rfloor + \left\lfloor \frac{1}{2} (X - X_0)^T \times B^{-1} \times (X - X_0) \right\rfloor + \left\lfloor \frac{1}{2} (X - X_0)^T \times B^{-1} \times (X - X_0) \right\rfloor + \left\lfloor \frac{1}{2} (X - X_0)^T \times B^{-1} \times (X - X_0) \right\rfloor + \left\lfloor \frac{1}{2} (X - X_0)^T \times B^{-1} \times (X - X_0) \right\rfloor + \left\lfloor \frac{1}{2} (X - X_0)^T \times B^{-1} \times (X - X_0) \right\rfloor + \left\lfloor \frac{1}{2} (X - X_0)^T \times B^{-1} \times (X - X_0) \right\rfloor + \left\lfloor \frac{1}{2} (X - X_0)^T \times B^{-1} \times (X - X_0) \right\rfloor + \left\lfloor \frac{1}{2} (X - X_0)^T \times B^{-1} \times (X - X_0) \right\rfloor + \left\lfloor \frac{1}{2} (X - X_0)^T \times B^{-1} \times (X - X_0) \right\rfloor + \left\lfloor \frac{1}{2} (X - X_0)^T \times B^{-1} \times (X - X_0) \right\rfloor + \left\lfloor \frac{1}{2} (X - X_0)^T \times B^{-1} \times (X - X_0) \right\rfloor + \left\lfloor \frac{1}{2} (X - X_0)^T \times B^{-1} \times (X - X_0) \right\rfloor + \left\lfloor \frac{1}{2} (X - X_0)^T \times B^{-1} \times (X - X_0) \right\rfloor + \left\lfloor \frac{1}{2} (X - X_0)^T \times B^{-1} \times (X - X_0) \right\rfloor + \left\lfloor \frac{1}{2} (X - X_0)^T \times B^{-1} \times (X - X_0) \right\rfloor + \left\lfloor \frac{1}{2} (X - X_0)^T \times B^{-1} \times (X - X_0) \right\rfloor + \left\lfloor \frac{1}{2} (X - X_0)^T \times B^{-1} \times (X - X_0) \right\rfloor + \left\lfloor \frac{1}{2} (X - X_0)^T \times B^{-1} \times (X - X_0) \right\rfloor + \left\lfloor \frac{1}{2} (X - X_0)^T \times B^{-1} \times (X - X_0) \right\rfloor + \left\lfloor \frac{1}{2} (X - X_0)^T \times B^{-1} \times (X - X_0) \right\rfloor + \left\lfloor \frac{1}{2} (X - X_0)^T \times B^{-1} \times (X - X_0) \right\rfloor + \left\lfloor \frac{1}{2} (X - X_0)^T \times B^{-1} \times (X - X_0) \right\rfloor + \left\lfloor \frac{1}{2} (X - X_0)^T \times B^{-1} \times (X - X_0) \right\rfloor + \left\lfloor \frac{1}{2} (X - X_0)^T \times B^{-1} \times (X - X_0) \right\rfloor + \left\lfloor \frac{1}{2} (X - X_0)^T \times B^{-1} \times (X - X_0) \right\rfloor + \left\lfloor \frac{1}{2} (X - X_0)^T \times B^{-1} \times (X - X_0) \right\rfloor + \left\lfloor \frac{1}{2} (X - X_0)^T \times B^{-1} \times (X - X_0) \right\rfloor + \left\lfloor \frac{1}{2} (X - X_0)^T \times B^{-1} \times (X - X_0) \right\rfloor + \left\lfloor \frac{1}{2} (X - X_0)^T \times B^{-1} \times (X - X_0) \right\rfloor + \left\lfloor \frac{1}{2} (X - X_0)^T \times B^{-1} \times (X - X_0) \right\rfloor + \left\lfloor \frac{1}{2} (X - X_0) \right\rfloor + \left\lfloor$

• To find the optimal solution, solve for: $\partial X = y(x) =$

This leads to iterative solution:

$$\begin{cases} \mathbf{A}_{n+1} = \left\{ \mathbf{B}^{-1} + \mathbf{K}_{n}^{\mathsf{T}} \mathbf{E}^{-1} \mathbf{K}_{n} \right\}^{-1} \mathbf{K}_{n}^{\mathsf{T}} \mathbf{E}^{-1} \right\} \left[(\mathbf{Y}^{\mathsf{I}\mathsf{n}} - \mathbf{Y}(\mathbf{X}_{n})) + \mathbf{K}_{n} \mathbf{X}^{\mathsf{I}} \mathbf{n} \right] \\ \mathbf{X}_{n+1} = \left\{ \mathbf{B}^{\mathsf{K}}_{n}^{\mathsf{T}} \mathbf{K}_{n}^{\mathsf{T}} \mathbf{K}_{n}^{\mathsf{T}} + \mathbf{E} \right\}^{-1} \left[(\mathbf{Y}^{\mathsf{I}\mathsf{n}} - \mathbf{Y}(\mathbf{X}_{n}) + \mathbf{K}_{n} \mathbf{X}^{\mathsf{I}} \mathbf{n} \right] \end{cases}$$

More efficient (1 inversion)

Preferred when nChan << nParams (MW)