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 Assimilation of satellite data is fundamental to forecast initialization/accuracy 
 
 Best representation of analysis fields requires: 

 Knowledge of how the guess, conventional and satellite data can best be 
utilized 

 The types of scenes (sfc/atm) which have the ability of being assimilated 
and ensuring unwanted observations are filtered out 

 
 
 
 

 Satellite radiance observations contain information to help characterize the 
surface and atmosphere before assimilation 
 An assimilation radiance preprocessor can be utilized in this context 

Motivation 
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GDAS Analysis GFS 6-hr Forecast 

GDAS Analysis 23 GHz Emissivity and Tskin 
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Overview of the 1DVAR Algorithm 

Physical algorithm (1DVAR) for microwave sensors (MiRS) 
MiRS applies to imagers, sounders, combination  
Cost to extend to new sensors greatly reduced 
MiRS uses the CRTM as forward operator (leverage) 
Applicable on all surfaces and in all-weather conditions  
Operational for N18, N19, Metop-A and F16/F18 SSMI/S  
On-going / Future:  

 Extension operations to Metop-B, NPP/ATMS and Megha-Tropiques 
(MADRAS and SAPHIR) 

 Get ready for the JPSS and GPM sensors.  
 Extend MiRS to Infrared Remote Sensing (CRTM is already valid) 

Overview 
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1D-Variational Retrieval/Assimilation 

MiRS Algorithm 
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 Convergence is reached everywhere: all surfaces, all weather 
conditions including precipitating, icy conditions 

 A radiometric solution (whole state vector) is found even when 
precip/ice present. With CRTM physical constraints. 

Previous version (1 attempt) 
(assume non-scattering atmosphere) 

Current version (2 attempts) 
(assume scattering from precip) 
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Cloud Liquid Water 

GFS 

MiRS 

MiRS - GFS 

Preprocessor-CLW 
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CPC real-time 24-hour precipitation 

MiRS N18 retrieved emissivity at 31 GHz ascending node 

2010-10-20 2010-10-22 2010-10-21 

Evolution 
of emiss 
before, 
during 

and after 
rain 

CPC Figures courtesy http://www.cpc.necp.noaa.gov 

Preprocessor-Emissivity 
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Radiance Assimilation Impact 

Comparison of O-B using MiRS retrieved CLW 
versus NWP CLW for cloud screening 

~6000 pts after filtering out cloudy scenes 
 1 day 
 Ocean only 
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Assimilation Impact 
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AMSU 23 GHz 

AMSU 89 GHz AMSU 50 GHz 

AMSU 31 GHz 

Assimilation Impact (O-B) 
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MHS 89 GHz 

AMSU 183 ±3 GHz MHS 183 ±1 GHz 

MHS 157 GHz 

Assimilation Impact (O-B) 
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 MiRS is a generic retrieval/assimilation system (N18, N19, Metop-A, DMSP 
F16/18 SSMIS) 
 

 In retrieval mode, MiRS can be used as an NWP (assimilation) preprocessor 
 

 MiRS LWP has shown to produce reasonable O-B (improvement over using 
guess fields) 
 

 Future work will include investigating the use of other QC metrics and 
retrieved fields to filter/parameterize DA 
 

 For more detailed information about the MiRS project, visit: 
mirs.nesdis.noaa.gov (more validation data, publication list and software 
package) 

Summary 
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GDAS (Hybrid ENKF)  
high resolution  

ATMS experiment 
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Cost Function to Minimize: 
 
 

To find the optimal solution, solve for: 
Assuming Linearity  
This leads to iterative solution: 

 

Mathematical Basis: 
Cost Function Minimization 
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More efficient 
(1 inversion) Preferred when nChan << nParams (MW) 

Jacobians & Radiance Simulation  
from Forward Operator: CRTM 

The 1DVAR Algorithm 
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