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*»» Two modes of operation
= 1DVAR Retrieval Mode (independent of NWP)
= 1DVAR Assimilation Mode (relies on NWP forecast)

*» Cost to extend algorithm to new sensors greatly reduced
“ MIRS applies to imagers, sounders, combination

* MIRS uses the CRTM as forward operator (leverage)

“» Applicable on all surfaces and in all-weather conditions
*» Operational for N18,19,Metop-A and F16/F18 SSMI/S

* On-going / Future:
= Extension to NPP/ATMS (in progress)
= Extension operations to Metop-B (spring 2012)
= Extension to Megha-Tropiques (MADRAS and SAPHIR) (on-going)
= Get ready for the JPSS and GPM sensors (on-going for TRMM/TMI). 3



Mathematical Basis:

Cost Function Minimization

+s» Cost Function to Minimize:

1 T -1 Jacobians & Radiance Simulationl
J( X)_ E(X_XO) <B X(X_XO) * from Forward Operator: CRTM

** To find the optimal solution, so
“* Assuming Linearity y( X)=
*+ This leads to iterative s
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More efficient
(1 inversion)
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Preferred when nChan << nParams (MW)
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1D-Variational Retrieval/Assimilation

Measured Radiances

MiRS Algorithm

| N a D

MIRS Is a physical algorithm”:

All-parameters Solution (including hydrom.)

constrained by:

(1) Geophysical covariance,

(2) Fitting measurements,

(3) Physical Jacobians,

(4) Physical radiative transfer and

(5) Simultaneous retrieval of all parameters
N
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New Atmospheric Background Covariance Matrix based
on ECMWF 60, and WRF simulations over tropic oceans
performed during SON season

Correlation Matrix for Params: TEMPMAVAP/CLW/RAIN/GRPLITSKIN/SFCGP/
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MIRS Rainfall rate = Fct (Hydrometeors: IWP, CLW, IWP)

Rain Rate can NOT be inverted per se without time-varying information

Characteristics:

- A relationship between hydrometeors and rainfall rate is used as post-processing
- Sensor-Independent (easy to extend)

- WRF-based physics included (trained offline to relate RR from IWP, RWP, CLW)

Room for Improvement:
- Same function used (one for land one for ocean)
- Same covar/background used for all retrievals (flow-dependence should improve perfs)

LB /I T prary !
Temperature and Water Cloud liquid, Rain and
Vapor from ECMWF 60 Ice water from WRF

Off-diagonal elements exist to constrain T, Q, Cloud, Rain and Ice
variations within the minimization process




TB (K}

The PDF of X is assumed Gaussian

Operator Y able to simulate measurements-like
radiances

Errors of the model and the instrumental noise
combined are assumed (1) non-biased and (2)
Normally distributed.

Forward model assumed locally linear at each iterationg

Nothing, in theory, prevents us from including
hydrometeors in the state vector, along with T, Q,
Emissivity, Tskin

AMSU-A/MHS TB vs. GWP
- T 25v T

250 |
295
200

175

11 I T | ‘ |

150 —

125 L . . 1 L . . 1

® - X
X

o
no
F-9
[+ )]
—
o

GWP (mm)

=

-TB variation vs. hydrometeors is non-
linear but is locally linear, therefore
compatible with variational inversion

-TB variation in time and space is highly
non-linear and is discontinuous due to
non-continuity variations of hydrometeors
In time and space



N18 TB
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\ Non-Linearity Issue in Cloudy/Rainy TBs

(TB Variation as a Fct of Time)

TB (K)
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Information Content in Rain

(Both imaging and sounding channels)

AMSU Weighting Functions
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=  of emiss
before,
during

and after

sensitive to surface.

-The emissivity varies greatly and at short temporal
scales when precipitation occurs.

-Signal in TB iIs therefore a mixture of rain and emissivity
sighals (depending on the intensity of the precip)

This suggests:
(1) Not using fixed atlases for emissivity

cF (2) Dynamically vary the emissivity along with rain, ice,cld
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MIRS Testbed:

Climatology & Vertical Structure

Rainfall Climatoloqgies Hvdrometeor Profiles/Vertical Cross
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Caution: algorithms perfs depend on how many sensors are used

>

*

Monitor a running time series of
statistics relative to rain gauges

Intercomparison with other PE
algorithms and radar

MIRS composite uses Metop-A,
N18, F16

Tightening of RTM uncertainty in
June 2011 improves POD & Heidke
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» Efforts are on going to:

= Use 1DVAR as a pre-processor to NWP for
guality control purposes (Kevin Garrett’s
presentation)

= Implement dynamically-retrieved emissivity in the
NWP first guess/background (to allow further
assimilation of surface —sensitive channels)

= Assess assimilating sounding products in
cloudy/rainy conditions
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Summary & Conclusion

“* MIRS Is a generic retrieval/assimilation system (n18, DMSP, NPP, etc).
*» Handling cloud/rainy —radiances by varying hydrometeors.
 Sfc rainfall rate is derived using IWP, RWP, CLW inputs

< Handling surface-sensitive channels (important for o
hydrometeors and rainfall rate estimation) by varying emissivity

< RR Assessment suggests approach provides reasonable
results (Compared to Radar, gauges, other algorithms)

Importance of RTM uncertainty:~0.5 K in high-freg channels.

“» Local linearity satisfied in 1DVAR, when hydrometeors are
added. Jacobians are derived like other parameters.

“* Avoiding cloud-resolving models in the VAR systems (1D,
3/4DVAR assimilation schemes ) avoids challenges altogether:

“» 1DVAR+ 3/4DVAR assimilation is one appealing way to treat
hydrometeor-impacted measurements (in data assimilation)

“ Current efforts to assess1DVAR preprocessing in an NWP

< For more information about the MIRS project, visit:
mirs.nesdis.noaa.gov 16



BACKUP SLIDES
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Sensor

e
Sounding Retrieval:
eTemperature .L.’

-
Ao o~dy s2sm e~

— To account for cloud, rain, ice, we add the following in the state vector:

'} Cloud (non-precipitating)

.1 ® Liquid Precipitation
‘4 e« Frozen precipitation

To handle surface-sensitive channels, we add the following in the state vector:

e SKin temperature

e Surface emissivity (proxy parameter for all surface parameters)

5 S
2\ ?
2
%
A
%
()
AN / A

Scattering Effect

— N\WST

approach is to account for cloud, rain and ice within its state vector.
« Itis highly non-linear way of using cloud/rain/ice-impacted radiances.

“ Instead of guessing and then removing the impact of cloud and rain and ice on TBs (difficult), MIRS

19




Current & Planned Capabilities

,\/ MiRS is applied to a number of microwave sensors,
V /\\ each time gaining robustness and improving validation
POES

for Future New Sensors
— MO, The exact same executable, forward operator,
covariance matrix used for all sensors

V/ DMSP  Modular design
. SsMmis e Cumulative validation and consolidation of MiRS

F16/F18

\/Z Applied Operationally
TRMM/GPM/

M-T
TMI, GMI proxy,

SAPHIR/MADRAS
oS g

NPP/IPSS

ATMS

\/Z Applied Routinely

\/I Tested in Simulation

o



Retrieval in Reduced Space

(EOF Decomposition)

“» All retrieval is done in EOF space, which allows:

= Retrieval of profiles (T,Q, RR, etc): using a limited number of EOFs
= More stable inversion: smaller matrix but also quasi-diagonal
= Time saving: smaller matrix to invert

+* Mathematical Basis:

= EOF decomposition (or Eigenvalue Decomposition)
« By projecting back and forth Cov Matrx, Jacobians and X

/. O= L—T xBxL
Diagonal Matrix Transf. Matrx Covariance matrix
(used in reduced space retrieval) (computed offline) (geophysical space) 21



Parameters Retrieved Simultaneously

Including Hydrometeors

If X is the set of parameters that impact
the radiances Ym, and F the Fwd Operator

% Necessary Condition (but not sufficient)
If F(X) Does not Fit Y™ within Noise F(X) Fits Y™ within Noise levels
X 1s not the solution X 1S a solution X is the solution

v

All parameters (including hydrometeors) are retrieved
simultaneously to fit all radiances together

Suggests it is not recommended to use independent algorithms for different
parameters, since they don’t guarantee the fit to the radiances 22



CRTM as the Radiative Transfer &

Jacobian Operator

A validated, externally maintained forward operator

“*Leverage (~4 FT working on CRTM at JCSDA plus a
number of on-going funded projects with academia,
Industry to upgrade CRTM ) .

“*»Have access to a model capable of producing not
only radiances but also Jacobians

“»Long-term benefit: stay up to science art by
benefiting from advances in CRTM modeling

capabillities:
= Radiative & Multiple scattering solution
= Ice and rain optical properties
= Atmospheric absorption

= Surface emissivity handling (and reflectivity)
23



Vertical Integration and Post-Processing

Temp. Profile TPW
RWP
Humidity Profile :> Vertical |:> IWP
Integration CLW

Lig. Amount Prof

Ice. Amount Prof

DVAR
utputs

>< -Rain Rate S

MIRS Rainfall rate = Fct (Hydrometeors: IWP, CLW, IWP)

Rain Rate can NOT be inverted per se without time-varying information

Characteristics:

- A relationship between hydrometeors and rainfall rate is used as post-processing

- Sensor-Independent (easy to extend)
- WRF-based physics included (trained offline to relate RR from IWP, RWP, CLW)

Room for Improvement:

- Same function used (one for land one for ocean)
- Same covar/background used for all retrievals (flow-dependence should improve perfs)

24
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