Towards the use of cloud microphysical properties to simulate IASI spectra

François Faijan¹, Lydie Lavanant¹ and Florence Rabier²

1 – Météo-France/CMS/R&D 2 – Météo-France/CNRM/GMAP

0

Objectives :

- Take into account cloud microphysical properties in radiative transfer models (RTM) to simulate IASI cloudy spectra.
- Use cloud NWP profiles data into RTM

Problem :

Due to limited description of cloud in NWP and to RTM scattering approximation, whole IASI spectra could not be well simulated

<u>Methodology :</u>

- 1. From AQUA-Train profiles :
 - evaluate cloud microphysics RTMs
 - defined a processing methodology
- 2. Apply previous methodology to a global operational context

Thermal surface emission

Introduction RTMs AQUA-Tr profiles Operational context Conclusion

<u>CLWC/CIWC/De</u> : cloud liquid/ice water content/effective diameter

<u>COT</u> : cloud optical thickness

Introduction RTMs AQUA-Tr profiles Operational context Conclusion

Presentation Processing Results

<u>Concordlasi campaign</u>: Use of co-registered cloud AQUA-Train profiles to evaluate cloud microphysic treatments in RTMs and establish a processing methodology

- Dardar profiles : Synergetic product from AQUA-Train CALIPSO Lidar and CLOUDSAT radar (Delanoë and Hogan, 2008).
 - Profiles of CIWC (60 m vertical resolution)
 - Profiles of De
 - More information on ICARE website : www.icare.univ-lille1.fr
- 20896 coregistrations between DARDAR and IASI/AVHRR from September 2010 to January 2011 over Antarctic and Arctic. 7931 coregistrations CloudCover >95%

DBT : Difference brightness temperature

 Introduction
 RTMs
 AQUA-Tr profiles
 Operational context
 Conclusion

 Presentation
 Processing
 Results
 Results
 Results

Impact of the De parameterization in RTTOV for semi-transparent clouds

Which parameterization ?

Methodology :

- Apply filters
- RTTOV: De parameterization which best simulates the spectrum
- HISCRTM: De which best

simulates the 780-960 cm⁻¹ slope

	Op.	St.
Ou &Liou	5%	15%
Wyser	11%	17%
Boudala	3%	21%
McFarquhar	6%	19%
Dardar	75%	28%

Presentation Results

Objective : Apply previous methodology to an operational context with the cloud data from ECMWF 6h-12h forecast

- Six days : 01/02/2012 06/02 /2012
- Resolution : spatial < 0.25° temporal < 1h30mn
- Processing of only overcast IASI pixels (from AVHRR cloud mask)

CIWC from NWP (ECMWF)

Cloud mask from IASI-AVHRR clusters

Presentation

Results

Better results in the high latitudes

Presentation Results

RTTOV - Opaque

RTTOV – Semi-transparent

HISCRTM - Opaque

HISCRTM – Semi-transparent

Toujours un temps d'avance

- Two studies were conducted :
 - 1. Use of co-registered cloud AQUA-Train profiles to evaluate cloud microphysics treatments in RTMs and establish a processing methodology
 - 2. Apply previous methodology to global NWP context
- RTMs including cloud microphysics correctly simulate IASI observations when the cloud profiles are accurate enough
- Establishment of two efficient filters independent from RTMs
- Similar results for the two studies
- RESIDUALS<3K whatever the type of cloud (Opaque or Semi-Transparent)
- Large impact of 'unknown' De on the simulated spectrum: need of De in the control variables of a retrieval process (ex : 1dVar system)
- Tropics: applied filters are less efficient

Thank you for your attention

00

FEO FRANCE

Toujours un temps d'avance

High DBT in presence of multi layer clouds