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Introduction

Nowadays, satellite observations are an importaotce of data assimilated in numerical
weather prediction (NWP) models. They contributesippeely to NWP analysis and the
accuracy of forecasts (Kelly and Thépaut 2007).

The Infrared Atmospheric Sounding InterferometekS() on-board the MetOp satellite
belongs to a new generation of advanced infrareshders and follows the launch of the
Atmospheric InfraRed Sounder (AIRS) on-board thaidgatellite in 2002. AIRS with 2378
channels and IASI with 8461 channels provide infmtion about atmospheric temperature
and humidity with a far better spectral resoluttmmpared to previous instruments such as
the High Resolution InfraRed Sounder (HIRS). Ak tNWP centres intend to increase the
number of assimilated satellite observations wiagich limited, most of the time, to clear-sky
locations. For instance, only 3% of the screeneliarees are used in the operational data
assimilation at the European Centre for Medium-RaMyeather Forecast (ECMWF)
according to Kelly and Thépaut (2007). This undepleitation of satellite data is partly
caused by a rejection of cloud-affected radianaesd the assimilation process because of
large innovations (observation minus background wucloud mislocation or deficiencies in
the modelling of clouds, either in radiative trarsfRT) models or NWP models. The high
correlation between cloud cover and meteorologicadinsitive areas underlines the need to
use infrared observations in presence of clouddN@llg 2002, Fourrié and Rabier 2004).
Nevertheless, an incorrect modelling of clouds $eadincreased errors in the RT calculations
especially in the infrared (IR) spectral range \hie very sensitive to cloud microphysical
properties. Different techniques have been developethe frame of global models to
overcome this problem. The first one was to reglcthe observations classified as cloudy
using sophisticated screening procedures (Englishl €999). This led to a poor yield in
terms of exploited soundings. Instead of identiflyinlear-sky locations, McNally and Watts
2003 developed a method to detect clear channel®m fnigh-resolution IR spectra to
assimilate channels unaffected by clouds everciowd-affected sounding.

Pavelin et al 2008 showed that it is possible &inaitate cloud-affected infrared radiances
when retrieved cloud parameters are used as sstramts. The cloud-top pressure (CTOP)
and the effective cloud fraction (Ne) are firstriemted by a one-dimensional variational data
assimilation system (1D-Var) and then transferedhe four-dimensional variational data
assimilation (4D-Var) for the assimilation of cleatfected radiances. This method has
shown to improve significantly the analysis prdil@ver the first guess and is used
operationally at the Met Office to assimilate AIRSd IASI cloud-affected radiances.
Recently, McNally 2009 has used the two cloud patans (CTOP and Ne) to directly
assimilate cloud-affected IR radiances. Two charae used to determine the cloud
parameters which are then introduced into the arsabontrol vector of the 4D-Var system of
the global NWP model of the ECMWF. The cloud par@rseare used only to constrain the
minimisation but are not included in the modeldgelsed for the forecasts.

In this study, we propose new developments forag®milation of cloud-affected radiances
taking advantage of the high resolution of conwecscale NWP models. Their kilometre-
size grid mesh, non-hydrostatic equations and mplgysics parameterizations enable a better



modelling of cloud variables such as liquid watentent (ql), ice water content (qgi) and
cloud fraction.

However, the assimilation of satellite data in nsesdte model creates new problems such as
scale differences between model and satellite nmeamnts. In fact, such NWP models are
generally one order smaller than any satellite ofadion field of view.

The main purpose of this paper is to assess thsibflity of adding cloud profiles (qgl,qi) in
the control vector of a 1D-Var assimilation systpmparing for the direct assimilation of
such profiles in the three-dimensional variatiodata assimilation (3D-Var) system of the
French operational AROME model (Seity et al 2011).

To prepare the 1D-Var, an observation-screeninggquhare permitting an improved selection
of homogeneously covered scenes from IASI obsemativas developed. The feasibility of
using cloudy fields from mesoscale NWP models tmutate cloudy radiances was
investigated. To that end, the fast RT model RTT@¥ been used to improve the simulation
of multi layer clouds. We evaluated the simulatddud-affected radiances and their
departures from observations. Finally, some 1D-&greriments, using cloud-affected IASI
radiances are presented.

Experimental framework

In order to convert atmospheric profiles from thé&/R model into simulated radiances, the
fast radiative transfer model RTTOV is used. Thesiom 10.1 of RTTOV (Hocking et al
2010) used in this study contains an advancedfamterto include gl, gi and cloud fraction
profiles called RTTOVCLD hereafter. The advancetiface RTTOVCLD enables a better
modelling of clouds with the possibility of mulayer clouds and two cloud types per layer.
Absorption is computed in each of the 101 fixedtieat levels from the interpolated cloudy
profiles using fast transmittance coefficients gklted by the line-by-line transmittance
model LBLRTM.

The convective scale model AROME (Application ofsBarch to Operations at MEsoscale)
with a 2.5 km grid mesh is used to provide cloudyfifes over the Mediterranean Sea during
a period of 30 days (7 October 2010 to 7 Novembao

Selection of homogeneously covered scenes

The assimilation of cloudy radiances in convecsigale models is an innovative challenge.
Focusing on homogeneously covered scenes avoidg caanplications associated with the
forward modelling and analysis of fractional clouds

The agreement between observations and simulatiomsthe background is also improved
with this selection. This condition is necessarydspect the linearity in the vicinity of the
background required by variational assimilationmoels

The selection of cases seen as homogeneous by |AS8thand AROME also avoids
deficiencies in the analysis and non-Gaussianiloigton for background errors caused by a
mislocation of clouds (Auligné et al 2010). In tlsisction, we propose a method to analyse
the homogeneity of the scene both in the obsemvaiace and in the model space.

The AVHRR cluster

The Advanced Very High Resolution Radiometer (AVHRBn MetOp is helpful to define
the scene type (partially cloudy or overcast).

The AVHRR cluster provided by EUMETSAT in the 1ARVellc files (Cayla 2001) proved
to be a valuable tool. This product is based omadiance analysis of co-located AVHRR
pixels inside each IASI FOV. AVHRR measures theiaace emitted by the Earth in six
spectral bands: two in the visible and four inRe

All AVHRR pixels are aggregated in classes charatd by homogeneous properties in the
radiance space using a K-means clustering. For ASHRR class and each channel, the
cluster product provides the mean radiance, thedata deviation and the coverage of the



class within the IASI pixel. As the aggregation w&sformed with all the available AVHRR
channels, the algorithm can produce several clagges with relatively small standard
deviations for the IR channel. As a result, a FOthweveral classes with each one a small
standard deviation and a mean radiance close tooth#he other classes can be more
homogeneous than a FOV with a single class. Thiseigeason why the number of AVHRR
classes inside each IASI pixel was not used abahegeneity criterion. Alternatively, these
characteristics were used to compute global stdisf the AVHRR cluster aggregating the
information provided by all the classes within A1 FOV. We focused on one of the IR
channels (11.5im) to get closer to the scene observed by IASI.

We calculated a weighted average considering eaanmadiance and standard deviation for
the 11.5um band (weight depending on the coverage of thesaldthin the IASI pixel). One
part of the homogeneity criterion is based on tative standard deviation calculated from
these global statistics and represents the inagsdhomogeneity of the AVHRR cluster. This
first criterion assures that each AVHRR class imbgeneous but not that all the classes
observe the same cloudy scenes. To evaluate teedclaiss homogeneity, the standard
deviation of the mean radiances of all the clahsssheen calculated.

The AVHRR cluster gives information about the scetserved by IASI but none about
AROME. To keep scenes for which both the obsermatiod the simulated radiance are
homogeneous, the model homogeneity has been esdlogta comparable method.

Similar statistics as the ones used from the AVHRRIter are reproduced. We used each
AROME grid point within the IASI spot to simulatket radiances measured in the 1jind
band by the AVHRR imager with the use of the radéatransfer model RTTOVCLD. The
standard deviation between each simulated radientde equivalent in the model space of
the inter-class homogeneity and can be used taw&eathe model homogeneity (for more
details on the process of selection see Martinat 2012(a)).

The concepts of inter-class and intra-class homeigernin the model space and the
observation space were used to select homogenemmsdyed cloudy scenes.

Evaluation of the observation operator

In this section, we monitor simulated and obsemleddy IASI radiances during our 30-day
test period over the Mediterranean Sea.

To be assured that the monitoring focused on oserseenes, the percentage of cloudy
AVHRR pixels within the IASI FOV has been used iddaion to the selection of
homogeneous scenes. IASI observations with 1008oatly AVHRR pixels were kept.

In this screening-procedure, we imposed the clastirof the observation by the amount of
cloudy AVHRR pixels within the IASI FOV but we diabt take into account the cloudiness
of AROME. To sidestep this problem and check thathlthe observation and the model
observe the same cloudy scene, we imposed thatiffieeence between the mean AVHRR
brightness temperatures from the observed andhdated cluster is smaller than 7K. This
new constraint is important to avoid a cloud miattan between AROME and IASI and to be
as close as possible to the true state.

Standard deviations and biases of the O-B (obdervaminus background) departures are
shown in figure 1 for the different screenings: roast scenes (left panel), homogeneous
overcast scenes (middle panel) and homogeneousastescenes with a condition on the
AROME cloudiness (right panel). As should be expdcthe best model statistics are found
in channels least affected by clouds (CO2 and watpour bands). Standard deviations are
larger for window channels revealing a dependemcthe vertical position of the sensitivity
functions. Biases and standard deviations are léogeovercast scenes (-7K and 20K
respectively for window channels). The restrictiorhomogeneous scenes in both the model
space and the observation space decreases theyli&sand the standard deviation by 4K in
the window region. Thus, this criterion seems rate\to avoid the selection of broken clouds
but it is not sufficient to have an acceptable Iefebias prior to any assimilation. Avoiding



the cloud mislocation between AROME and IASI sigmaiftly improves the bias (-1K for
window channels). The standard deviation is alswedesed by more than 10K to values less
than 5K which is a considerable improvement.

It is also interesting to investigate the PDF (@ataibty density function) of the observation-
operator error as it gives information on the obaton-error covariance matriR. For this
study three channels spectrally located arounduid (700 cm-1, CO2 band, weighting
function peaks around 250 hPa), ad (942 cm-1, window channel, weighting function
peaks around 1000 hPa) anqum (1400 cm-1, water vapour channel, weighting fiamc
peaks around 500 hPa) were used. The PDF of thed€pBrtures are shown in figure 2, top
panels for overcast scenes, middle panels for hemamus overcast scenes and bottom panels
for homogeneous overcast scenes with a conditiolh®@®AROME cloudiness (constraint on
the AVHRR brightness temperature difference). Thpaitures are characterized by a near-
symmetric distribution for all channels. The skeasef the distribution is relatively small
for CO2 and water vapour channels.

The impact of clouds is obvious on the window clemwith departures spreading from -70K
to 60K when considering only overcast observatidvie.can note that adding a constraint on
the AROME cloudiness (bottom panels) narrower Gauasdistributions are observed for all
channels with a significant improvement for the @aw channel. The departures for the
window channel are significantly decreased spregafliom -10K to 10K instead of -70K to
60K.

These results prove some capability of the observaiperator to simulate overcast scenes.
However, bias and standard deviation of the backmtdorightness temperature compared
with observations are large for channels highlysgem to clouds. These channels are located
in the window region and present large non-lineggiin cloudy conditions. Without any bias
correction, a screening only on the percentagdonidy AVHRR pixels within the IASI FOV

is not sufficient to assimilate these observatidie selection of homogeneous scenes with a
constraint on the mean AVHRR brightness temperaoaebles to decrease the bias to a value
more acceptable for the assimilation.

All these results support the idea that we shoulgjirb the assimilation by selecting
observations of overcast clouds where an homogeneEQY has been identified and where
the NWP model is able to reproduce the observditonogeneity and cloudiness.

The selected homogeneous overcast clouds will bd isa 1D-Var retrieval process in the
next section.
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Fig 1. Bias and standard deviation (Std) of the differences between the model and
the cloud-affected observed IASI brightness temperatures over a 30 day period from
7 October 2010 to 7 November 2010 on the Mediterranean Sea. Left panel:
considering all overcast observations, middle panel: all homogeneous overcast
scenes and right panel: only homogeneous overcast scenes with a constraint on the
AVHRR brightness temperature.
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Fig 2: Relative frequency distribution of brightness temperature difference between
observation and background (O-B) for all overcast scenes (top panel),
homogeneously covered scenes (middle panels) and homogeneous scenes with a
constraint on the AVHRR brightness temperature difference (bottom panels). The
PDF are presented for three channels: (CO2 channel (14um), window channel
(12pm), water vapour channel (7um)). The Gaussian distributions with the same
error characteristics are also shown.

Observing System Simulation Experiments (OSSE) in a 1D-Var
framework

In this section, 1D-Var experiments are performethg the 1D-Var code (version 3.3)
provided by the Met Office in the frame of the EUMEAT NWP Satellite Application
Facility (Pavelin and Collard 2009). We interfadbts 1D-Var system with the version 10 of
the RT model RTTOV and the cloud variables wereeddd the state vector.

As no observation is available to validate theiegtals, the 1D-Var is evaluated in the context
of OSSE. For that purpose, the background proéitesgenerated from the AROME profile
dataset perturbed with the addition of simulatetedast errors. The forecast errors are
calculated from the error-covariance matBx

such as :

Xp=X+€,B"



wherex, is the perturbed background profile,is considered as the “true' profile, @pds a
random number drawn from a Gaussian distributioth veiero mean and unit standard
deviation. The background-error statistics wereivéer from an AROME ensemble
assimilation, that considers explicit observatioertgrbations and implicit background
perturbations through the cycling, coupled with thy@erational ensemble assimilation at
global scale. They were calculated from a set ofcd8vective cases observed during the
months of July, August and September 2009 (simikethod detailed in Michel et al 2011).
The observations are generated from the perturtsakgbound profiles and simulated
observation errors are added such that:

y =H(x;) + eoR"

wherey is the perturbed observatiohi(x;) is the observation simulated from the ‘true’
profile, andg, is a random number drawn from a Gaussian distabuvith zero mean and
unit standard deviation. The observation-error canae matrixR was constructed with the
values of the instrumental noise provided by CNE& a constant error is added to take into
account the radiative transfer model error. Inc¢hatext of cloudy retrievals, 200 channels
have been added to the operational IASI selectid®66 channels used at ECMWF (Collard
2007, Collard and McNally 2009). The 200 channedlgehbeen chosen with the iterative
method of Rodgers (2000) on profiles over the Mediinean Sea homogeneously covered by
clouds and representative of different cloud-tyfe=mi-transparent ice clouds, opaque ice
clouds, low liquid clouds, mixed-phase clouds).

The root-mean-square errors (RMSE) of the backgt@und retrieved profiles with respect to
the “truth’ (i.e. the original AROME model profi)eare shown for high opaque clouds (figure
3) and low clouds (figure 4). The profiles of RM$8ttlicate that the analyses are always
better than the background. Information about teatpee, humidity, liquid water content
and ice water content can be successfully extracted the 1ASI cloudy soundings. In the
opaqgue-cloud cases, the analysis errors are sniladlerthe background errors essentially for
ice water content. The improvement for temperaisifecated above 200hPa because of the
cloud opacity. For humidity and liquid water corttethe background RMSE is almost equal
to the analysis RMSE (not shown). In the low-cl@ages, the cloudy soundings contribute to
temperature and humidity information through tiire atmospheric column. The 1D-Var
also modifies liquid water content and ice watenteat profiles so as to fit better the “true'
profiles.

To conclude, it appears that the assimilation of-level and high-level opaque clouds may
bring significant benefits for the extraction obed information. The information gained by
opaque clouds is small for temperature and humtdityever, but the information brought to
ice water content is really encouraging.
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Fig 3: Root mean square errors between the background and the “true' profile (dotted
line) and between the analysis and the “true' profile (thick red line). Retrievals

considering high opaque clouds.
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Conclusion

In this paper, we evaluated the capability of udimg cloud variables (liquid water content
and ice water content) for the assimilation of di@ifected infrared radiances in convective
scale models. The assimilation of radiances in soectiels suffers from sources of mismatch
between the cloudy observations (IASI) and synthetlues simulated from clouds generated
by AROME: bad location of clouds, representativanezdiative transfer.

Before any assimilation, it is important to evatu#ie observation operator used to calculate
the background equivalents on a given selectioobsfervations while minimizing all the
sources of mismatch.

The first part of this paper presents an obsemasioreening procedure to select cloudy
scenes valuable for the assimilation. The radieantalysis of co-located AVHRR imager
inside each IASI field of view has proved to befuk® quantify the degree of homogeneity
of the scene. An equivalent of the AVHRR observatiavas simulated using the cloud
profiles of each AROME grid point within the IASiefd of view. A process based on the
AVHRR cluster has been implemented to divide thgeokations between homogeneous and
heterogeneous scenes. A significant improvementthaf agreement between cloudy
observations and simulations from AROME was obskrve

The advanced interface RTTOVCLD was evaluated using selection of homogeneous
scenes. Biases of observation minus simulatiormiffices were mainly negative showing an
underestimation of the cloud radiative forcing. dearerrors, both in terms of bias and
standard deviation were shown for the most cloddcé#d channels. To avoid the model
cloud mislocation, the cloudiness has been chedketioth the model space and the
observation space. This restriction enabled toifsigmtly decrease biases and standard
deviations.

The second part of the paper described some 1DeXperiments. The retrievals were
validated with OSSE. The root-mean-square-errahefretrieved profiles with respect to the
“truth' is always better than the root-mean-sqearer of the background with respect to the
“truth'. An improvement of temperature and ice watmntent above the cloud top for opaque
clouds was observed. Information on temperaturepidity, liquid water content and ice
water content can be extracted through the entitexn for low clouds.

This paper described a feasibility study to ingse the potential of cloud estimation to
improve the use of cloud-affected radiances. Eraging results have been found for the
extraction of microphysical information. Howevehist study is restricted to the linear
estimation theory for which the observation oparatmuld be perfect and linear.

In cloudy conditions, the linearity of the obsergatoperator is not respected but efforts have
been made to select homogeneous cloudy scenessmigli background departures to be
already close to the ‘true' state. It has been shtwat the observation selection was good
enough to have an acceptable level of non-lineanityre observation operator. It was noted
that opaque clouds were the most appropriate feeoeshe tangent-linear assumption.

In future, the potential benefit of using a flowpgedentB matrix representative of different
cloud types should be investigated. For this sttity,operational IASI channel selection has
been reviewed to add new channels sensitive taddiofiormation (Martinet et al 2012(b)).
This channel selection will be improved and evadabn different air-mass types (polar,
mid-latitude, tropical).

Thiswork has been partly sponsored by MISTRALSHYMeX programme.
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