New developments for the use of microphysical variables for the assimilation of IASI radiances in convective scale models Pauline Martinet¹

> Nadia Fourrié¹, Florence Rabier¹, Vincent Guidard¹, Thibaut Montmerle¹, Pascal Brunel², Lydie Lavanant² 1: Météo France, CNRM, GMAP 2: CMŞ, Lannion

0

Introduction

State of the art of the assimilation of cloud-affected infrared radiances.

Evaluation of the radiative transfer model prior to the assimilation
 Use of the AVHRR cluster for the selection of homogeneously covered scenes.

• Evaluation of the radiative transfer model RTTOV CLD

1DVAR with simulated observations

- Observing System Simulation Experiments (OSSE)
- Retrieval of microphysical variables (liquid water content, ice water content) simultaneously with temperature and humidity.

Context of the study

Experimental campaign HyMeX
[1].: hydrological cycle over the Mediterranean, heavy precipitation events.

Special Observation Periods: 2012/2013

•Convective scale model AROME W MED: 2.5 km grid.

• Cloud-affected radiances from the hyperspectral infrared sounder **IASI** (8461 channels).

³ 1: Hydrological cycle in Mediterranean EXperiment

Main issues of cloud-affected IR radiances

• Cloud mislocation between the model and the observation: non gaussian distribution of background errors

• **Deficiencies of cloud modelling**: NWP models, radiative transfer model

• Non linearity of the observation operator

State of the art for the treatment of cloudaffected radiances

 Cloud detection scheme of McNally and Watts (2003) [1].

+ detection of clear channels instead of clear locations

- Use of data only above cloud tops: highly restricted in the mid to upper troposhere.

Weighting function

1: A.P.McNally and P.D Watts 2003: A cloud detection algorithm for high spectral resolution infrared sounders. Quart.J.Roy.Meteor.Soc, 129, 3411-3423.

2.McNally A.P 2009: The direct assimilation of cloud-affected satellite infrared radiances in the ECMWF 4D-Var. `Quart.J.Roy.Meteor.Soc,135,1214-1229.

3. Pavelin et al 2008: The assimilation of cloud-affected infrared satellite radiances for numerical weather prediction. Quart.J.Roy.Meteor.Soc, 134, 737-549.

5 4. Pangaud et al 2009: Assimilation of AIRS radiances affected by Mid-to-Low level clouds. Monthly Weather Reciew, 137, 4276-4292

State of the art for the treatment of cloudaffected radiances

 Cloud detection scheme of McNally and Watts (2003) [1].

+ detection of clear channels instead of clear locations

- Use of data only above cloud tops: highly restricted in the mid to upper troposhere.

• Use of two cloud parameters: cloud top pressure (**CTOP**) and effective cloud fraction (**Ne**) to constrain the assimilation.[2],[3],[4].

+ Use of cloud-affected channels

- Problems of detection of low level clouds and thin cirrus clouds, simplified modelling of clouds

Weighting function

1: A.P.McNally and P.D Watts 2003: A cloud detection algorithm for high spectral resolution infrared sounders. Quart.J.Roy.Meteor.Soc, 129, 3411-3423.

2.McNally A.P 2009: The direct assimilation of cloud-affected satellite infrared radiances in the ECMWF 4D-Var. `Quart.J.Roy.Meteor.Soc,135,1214-1229.

3. Pavelin et al 2008: The assimilation of cloud-affected infrared satellite radiances for numerical weather prediction. Quart.J.Roy.Meteor.Soc, 134, 737-549.

6 4. Pangaud et al 2009: Assimilation of AIRS radiances affected by Mid-to-Low level clouds. Monthly Weather Reciew, 137, 4276-4292

State of the art for the treatment of cloudaffected radiances

 Cloud detection scheme of McNally and Watts (2003) [1].

+ detection of clear channels instead of clear locations

- Use of data only above cloud tops: highly restricted in the mid to upper troposhere.

- Use of two cloud parameters: cloud top pressure (**CTOP**) and effective cloud fraction (**Ne**) to constrain the assimilation.[2],[3],[4].
 - + Use of cloud-affected channels

- Problems of detection of low level clouds and thin cirrus clouds, simplified modelling of clouds

- Development of a new solution: use of microphysical variables for the assimilation.
 - + Better modelling of clouds (multi layer, mixed phase).

- Linearity

1: A.P.McNally and P.D Watts 2003: A cloud detection algorithm for high spectral resolution infrared sounders. Quart.J.Roy.Meteor.Soc, 129, 3411-3423.

2.McNally A.P 2009: The direct assimilation of cloud-affected satellite infrared radiances in the ECMWF 4D-Var. Quart.J.Roy.Meteor.Soc, 135, 1214-1229.

3. Pavelin et al 2008: The assimilation of cloud-affected infrared satellite radiances for numerical weather prediction. Quart.J.Roy.Meteor.Soc, 134, 737-549.

7 4. Pangaud et al 2009: Assimilation of AIRS radiances affected by Mid-to-Low level clouds. Monthly Weather Reciew, 137, 4276-4292

Selection of homogeneously covered scenes: AVHRR cluster

- **AVHRR cluster** provided by EUMETSAT.
- **Aggregation** of AVHRR pixels in classes with a K-means clustering based on the 5 radiances when available.
- Restriction to overcast data: all the AVHRR pixels within the IASI FOV are cloudy.

Selection of homogeneously covered scenes: AVHRR cluster

- **AVHRR cluster** provided by EUMETSAT.
- **Aggregation** of AVHRR pixels in classes with a K-means clustering based on the 5 radiances when available.
- Restriction to overcast data: all the AVHRR pixels within the IASI FOV are cloudy.

Touiours un temps d'avanc

Frequency distribution of the observation minus simulation innovations.

Evaluation of the radiative transfer model RTTOV CLD.

Frequency distribution of the observation minus simulation innovations.

Toujours un temps d'avance

Mid-presentation conclusion

Selection of cloudy scenes prior to the assimilation

- Useful information can be derived from the AVHRR cluster.
- Importance of the cloud mislocation between AROME and IASI: we have to set a constraint on the cloudiness of AROME.
- After the screening procedure, gaussian background errors and biases of the innovations close to zero: we are ready for the assimilation

00

1DVAR Retrievals: OSSE experiments (Observing System Simulation Experiments)

• Use of AROME profiles within homogeneous overcast observations perturbed with a Gaussian noise proportional to the **B matrix**:

$$x=x_{true}+\varepsilon_{b}B^{1/2}$$

• Simulation of IASI radiances with RTTOV CLD. Perturbation with the IASI instrument noise provided by CNES and radiative transfer model errors.

$$y=H(x_{true})+\epsilon_{o}R^{1/2}$$

• Use of a background error **B** matrix computed from a 6 member AROME ensemble on **convective cases (Thibaut Montmerle [1])**.

• Comparison of RMSE of the background and the analysis with respect to the « true » profile. 366 channels monitored at ECMWF + new selection of 200 channels (poster 4.43).

1. Michel et al 2011: Heterogeneous Convective-Scale Background Error Covariances with the inclusion of hydrometeor Variables. Montly Weather Review, 139, 2994-3015.

Opaque clouds (Ne>=0.9)

Humidity [kgkg⁻¹]

x 10⁻⁴

1000^L

Low clouds (CTOP>=650 hPa)

Low clouds (CTOP>=650 hPa)

0

Analysis-True 100 Background - True 200 300 Pressure [hPa] 400 500 600 700 800 900 1000¹ 0 0.5 3 3.5 1.5 2.5 2 1 4 Ice Water Content [kgkg⁻¹] x 10⁻⁵

ICE WATER CONTENT

Conclusion and prospects

Past

• A screening procedure of cloud-affected radiances prior to any assimilation is necessary.

• Encouraging results found for the extraction of information about microphysical variables for low clouds and opaque clouds. Some problems remain for semi-transparent clouds (not shown).

Future

• Evaluate the possibility of adding a cloud layer when AROME is clear and IASI cloudy. For that purpose, modification of the cloud fraction during the assimilation.

 Evolution of the 1D-Var increment in a one-dimensional version of AROME to evaluate its capability to keep the cloud information from IASI.

Thanks for your attention.

0

