Use of cloudy radiances for NWP and retrieval of cloud parameters from IASI over Antarctica

Nadia Fourrié, V. Guidard, F. Rabier, T. Perttula* and T. Pangaud

CNRM-GAME
Météo-France and CNRS
Toulouse

* FMI

Outline

- In operations: towards the Assimilation of IASI cloudy radiances
- Evaluation of cloud in the CONCORDIASI project
- Conclusions and future works

Introduction

Start with AIRS data, then with IASI data

CTP and Ne retrieved with CO₂ slicing

Limitations of CO2 slicing method: detection of low-level clouds and cirrus.

Limitation of RTTOV: simplified cloud modelisation: one single opaque cloud layer

Weighting functions of

the 36 IASI channels

Use of the cloud cover from the imager for the assimilation of cloudy IASI radiances

- Same methodology applied for IASI as the one used for AIRS
- Cloud parameters determined with 36 channels
- Retrieval of cloud top pressure and cloud fraction only if cloudcover(AVHRR)=100% to favour the pixel homogeneity (but not sufficient)

Example for the 19th of september 2010 at 00 UTC

ITSC 18, Toulouse, France

Assimilation of AIRS/IASI cloudy radiances:

data selection

- Cloud parameters (cloud top pressure and effective cloud fraction) used as input of radiative transfer model for the simulation of cloudy radiance
- Assimilation of cloud affected channels if cloud top pressure included in the range 650-900 hPa on top of clear channels for overcast observations

About 2 % cloudy observations assimilated among the global IASI dataset,
 0.2%-0.3% additional IASI observations in the minimisation

Assimilation of AIRS/IASI cloudy radiances:

impact on forecast

- AIRS data: Small positive impact on the forecast skill. (Pangaud et al, 2009, MWR).
- In operations since February 2009 for the global model and since april 2010 for the mesoscale model AROME.
- IASI data: Forecast scores neutral to slightly positive (evaluation over monthly periods against ECMWF analyses and radiosondes).

96-hour Forecast RMSE wrt ECMWF analyses

- IASI cloudy radiances In the current e-suite
- Some results can be found in Guidard et al, 2011, QJRMS

CONCORDIASI

International project

Main goal: to improve the assimilation of satellite data over Antarctica

See Poster 4.46 by Vincent Guidard

13 driftsondes launched out of 19 Super-pressure balloons in total

Most of the sondes were dropped when coinciding MetOp overpasses + A-train

Part of the dropsondes were deployed in sensitive areas

Calibration/validation of IASI assimilation, including cloudy cases

ITSC 18, Toulouse, F

Flights overview Sept 2010-Jan 2011

Base date: 2010/10/12 at 00 / Predictions for day d+1 / AIRS-IASI Collocation
Predicted trajectory for balloon MSD07 (rank 6)
Check drap number 1 at time 21/16 (UTC)

Sensitivity of the cloud parameter retrieval in Antarctica

- Evaluation of the cloud parameter retrieval from IASI (Tuuli Perttula, FMI)
 - Evaluation with dropsondes and cloud parameter from CALIOP and CPR from the A-Train
 - Colocations provided by L. Lavanant
 - 120 IASI observations selected, over 11 days (oct-nov 2010)
 - 40 cloudy observations « seen » by CPR or Caliop
 - Only 8 cloudy observations with CPR and Caliop!
 - For clear CPR/Caliop observations, often cloud cover from AVHRR = 100%
- Hard to know where the truth lies!
- Modification of the atmospheric profile with dropsonde data but surface data (T2m, Hu2m and Ts) from model
- 9 observations with « close » dropsonde data selected over sea ice and land

Evaluation over sea ice

3 clear cases 6 cloudy cases

IASI retrieval closer to the CPR clouds

Surface temperature problem in the model over sea ice

Evaluation over land

- •Altitude above 2000m, high variability of the orography
- Difficulties to detect clear sky
- •Benefit from the imager for the cloud detection in some cases

Conclusions and prospects

- Simple cloudy radiance assimilation scheme with one layer opaque cloud. Similar approaches used in other NWP centres.
- IASI cloudy radiance assimilation in the current e-suite
- Same methodology will be applied to CrIS.
- A step further: cloudy radiance assimilation with cloud profiles:
 - Liquid water content and ice water content
 - 1D-Var study (Talk 4.15 by Pauline Martinet)
- Cloud parameter retrieval over Antarctica.
 - Need of cloud product for comparison (Talk 4.18 by François Faijan)
 - Problems of
 - surface temperature in the model over sea ice
 - high elevated orography
 - Presence of strong vertical gradient in temperature near the surface

Thank you very much!