

Prospects for All-Weather Microwave Radiance Assimilation

A.J. Gasiewski¹, A. Voronovich¹, B.L. Weber², B. Stankov¹, M. Klein³, R.J. Hill¹, and J.W. Bao¹

1) NOAA/Environmental Technology Laboratory, 325 Broadway, Boulder, CO, USA

2) Science and Technology Corporation and NOAA/ETL, Boulder, CO, USA

3) University of Colorado/NOAA-CIRES, Boulder, CO, USA

October 26-27, 2003

Potential capabilities include:

- Short-term prediction of mesoscale convection for warnings with high specificity
- Tracking of latent heat exchange within precipitation
- Improved accuracy of cloud and radiation products
- Extended thermodynamic information (water vapor and temperature fields) within frontal regions

Toward a Demonstration of GEM Radiance Assimilation

Maximum *a posteriori* estimation minimizes the following cost function *J* :

$$J = (x - x^{b})B^{-1}(x - x^{b}) + (h[x] - y)^{T}R^{-1}(h[x] - y)$$

The basic linear solution:

$$x^{a} = x^{b} + \begin{bmatrix} B^{-1} + H^{T} R^{-1} H \end{bmatrix}^{-1} H^{T} R^{-1} \left(y - h \begin{bmatrix} x^{b} \end{bmatrix} \right)$$

angent linear approximation
H for non linear observation
operator h:
$$H = \frac{\partial h}{\partial x}$$

The state vector X can include precipitation distribution parameters e.g., 4 parameters per hydrometeor phase for a Gamma distribution, At 5 phases => up to 20 hydrometeor parameters at each level

Effects of Hydrometeors on Microwave Signatures

- Strong impact by raincells on signatures above ~50 GHz
- Scattering predominantly caused by frozen hydrometeors
- Signatures even for non-precipitating clouds at higher frequencies

Scattering and absorption by hydrometeors needs to be considered in radiance assimilation both to extend soundings into cloudy regions and couple models to raincell occurrence.

ITSC 13

October 26-27, 2003

Effects of Hydrometeor Scattering on Microwave Signatures

- Scattering asymmetry and phase matrix determine angular redistribution of radiance
- Scattering asymmetry parameters varies significantly over frequency and size distribution parameter space

Effects of Hydrometeor Scattering on Microwave Signatures (cont'd)

 Neglect of multiple streams radiance (i.e., two-stream model) overestimates raincell albedo

Multiple streams of radiance with an appropriate phase matrix approximation need to be incorporated in forward RT models.

October 26-27, 2003

Fast Scattering-based Jacobian Technique

- Planar stratified atmosphere
- Liebe MPM 87 & 93 gaseous absorption model
- Polydispersive Mie solution for five phase of water:
 - Cloud (liquid) Rain (liquid)
 - Graupel (liquid/frozen mixture)
 - Snow (frozen)
 - Cloud Ice (frozen)
- Henyey-Greenstein hydrometeor phase matrix
- Discrete-ordinate layer-adding solution
- Incremental response to changes in bulk absorption and scattering coefficients and temperature
- Efficiency compatible with satellite data streams
- Applicable for arbitrary wavelengths

Practical Implications (Radiation Jacobian)

# Layers	# Streams	CPU Rate (GHz)	Calculation Time (ms)
60	8	1.8	4.2

Recourses:

- 1. Further simplified treatment of non-scattering layers (acceleration factor $\sim 2-3x$)
- 2. Parallel processing 2.8 GHz 100-nodes (acceleration ~ 200x)
- 3. Statistical: ~10% scattering cloud cover (acceleration ~10x)

=> ~1 usec per channel-profile (anticipated)

NPOESS CMIS data rate: ~30 channels every ~12 msec

=> ~400 usec per channel-profile

October 26-27, 2003

Product:	T_{B}	$rac{\partial T_B}{\partial eta_i}$
Number of operations:	$\sim N \cdot M^3$	$\sim (3 \div 5) N \cdot M^3$

N = Number of layers M = Number of streams

Voronovich, A., A.J. Gasiewski, and B.L. Weber, "A Fast Multistream Scattering-Based Jacobian for Microwave Radiance Assimilation," submitted for publication in *IEEE Trans. Geosci. Remote Sensing*, October 2003.

- 24-Hr simulation for 166 GHz
- Hurricane Bonnie, August 26, 1998, 0000-1130 UTC
- MM5/MRT Reisner 5-phase simulations with 6-km innermost nested grid
- Fast DO Radiative Jacobian with 60 vertical levels
- Jacobian cross-sections for 33° latitude slices
- 15-minute time increments

MM5/DO Hurricane Bonnie 183.3101 - 17GHz 26 August 1998 00:15 UTC

 T_B

 ϕ_{s}

- To realize "locking" of an NWP model onto precipitation, observations are needed at time and space scales of order ~5-15 km and ~15 minutes.
- Locking is analogous to phase-locked loop in electrical engineering wherein linear phase differencing is achieved only when oscillator and signal remain within same phase cycle.
- Similarly, linear NWP model updates can be achieved providede that the cloud and precipitation state does not decorrelate between satellite observations.

The sampling needs for all-weather microwave assimilation using near-term NWP models (especially regional models) are well satisfied by a largeaperture geosynchronous microwave sounder.

GMSWG* Concept Summary

GEosynchronous Microwave (GEM) Sensor

- Baseline system using 54, 118, 183, 380, and 424 GHz with ~2 m diameter Cassegrain antenna.
- ~16 km subsatellite resolution (~12 km using oversampling) above 2-5 km altitude at highest frequency channels.
- The 380 and 424 GHz channels selected to map precipitation through most optically opaque clouds at sub-hourly intervals. (Gasiewski, 1992)
- Temperature and humidity sounding channels penetrate clouds sufficiently to drive NWP models with hourly data.
- Estimated 2004 costs: \$34M nonrecurring plus ~\$32M/unit.

* Geosynchronous Microwave Sounder Working Group, Chair: D.H. Staelin (MIT)

October 26-27, 2003

GEM Spectral Selection

ITSC 13

October 26-27, 2003

GEM Vertical Response

- Clear Air -

ITSC 13

October 26-27, 2003

GEM Probing Depths

- Clear Air -

ITSC 13

October 26-27, 2003

• <u>Regional</u> (1500 x 1500 km²) : ~15 minutes

Band (GHz)	3-dB IFOV (km, SSP)	Deconvolved Resolution (km, SSP)	∆T _{RMS} (K)	∆T _{RMS} Required (K,SNR=100)
50-56	138.6	~104	0.04-0.1 🗐	0.1-0.6
118.705	60.2	~45	0.07-0.9 ~	0.1-0.6
183.310	41.9	~31	0.06-0.2	0.3-0.6
380.153	20.5	~16	0.03-3.4 *	0.3-0.5
424.763	16.4	~12	1.0-9.5 *	0.4-0.6

Assumptions:

- Averaging (downsampling) of beams to fundamental deconvolved resolution.
- * Further reductions in ∆T_{RMS} achievable via additional downsampling and/or time averaging.

• <u>CONUS</u> imaging time (3000 x 5000 km²) : 90 minutes

Downlink rate ~45 kb/sec at ~17 msec sample period

SMMW Spectral Modes

RT Model Calculations

ITSC 13

October 26-27, 2003

SMMW Degrees of Freedom

- Maritime Convective Precipitation -

ITSC 13

October 26-27, 2003

ITSC 13

GEM Simulated Imagery

Spectral Response

October 26-27, 2003

- Simulation of 183±17 GHz and 424.763±4 GHz channels
- Hurricane Bonnie, August 26, 1998, 0900 UTC
- MM5/MRT Reisner 5-phase simulations with 6-km innermost nested grid
- Fast DO Radiative Jacobian with 50 vertical levels
- Jacobian cross-sections shown for 33° latitude slices
- 15 minute and 3 hour time intervals

MM5 24-Hr Simulation of GEM Imagery Hurricane Bonnie August 26, 1998 424±4 GHz

ITSC 13

October 26-27, 2003

MM5 24-Hr Simulation of GEM Imagery Hurricane Bonnie August 26, 1998 424±4 GHz

ITSC 13

October 26-27, 2003

MM5/MRT Reisner 5-phase with DO RT model at 183.310 ± 17 GHz

ITSC 13

ND ATMOSA

NOAA

ARTMENT OF

October 26-27, 2003

Sainte-Adele, Quebec, Canada

CHNO

Hurricane Bonnie, August 26, 1998, 0900 UTC MM5/MRT Reisner 5-phase with DO RT model at 424.763 ± 4 GHz

ITSC 13

ND ATMOSA

NOAA

ATMENT OF

October 26-27, 2003

Sainte-Adele, Quebec, Canada

CHNO

GEM Antenna Studies

Main Beam Microscanning

5 beam scan (0.14°) at 424 GHz from tilting/decentering subreflector and 2-m reflector (MIT/Lincoln Labs)

October 26-27, 2003

PSR/S 380 GHz Spectrometer

October 26-27, 2003

GEM Mass, Power, Slew, Data Rate

2-meter System – MIT/LL Study

Total Mass	Component	Number	Weight (kg)	Weight (lb)
~66 kg	Main reflector	1	15.00	33.07
	Subreflector	1	0.07	0.15
Moving Mass ~ 53 kg (momentum compensated)	Strut	3	0.97	2.14
	Subreflector support structure	1	1.78	3.92
	Subreflector nodding actuator	1	1.00	2.20
	Antenna shape-sensing hardware	1	1.00	2.20
	Back structure collar	1	3.53	7.78
	Back structure vanes	3	4.75	10.47
	Rotary calibration optic	1	0.25	0.55
/lain Reflector lax Slew Rate ~0.1º/sec	Rotary optic drive motor	1	0.70	1.54
	RF feedhorns	5	1.50	3.31
	Calibration bodies	2	2.00	4.41
	Instrument mounting structure	1	2.00	4.41
Power ~ 125-150 W	Space tube	1	0.60	1.32
	Receivers	5	18.00	39.68
	Dichroic	1	0.25	0.55
	Subtotal		53.40	117.72
Data ~ 64 kbps	Elevation structure & mechanisms	1	6.35	14.00
	Azimuth structure & mechanisms	1	6.40	14.11
	Total		66.15	145.83

ITSC 13

N

October 26-27, 2003

Summary

- Microwave NWP assimilation of precipitation likely possible over mesoscale-sized regions with ~15 min update. Longer update intervals progressively inhibit ability to "lock" the NWP model onto precipitation evolution, especially at raincell-scale grid sizes.
- GEM will be a cost-effective AMSU-like sounder/imager but with time-resolved observations of precipitation – complementary to geostationary infrared, with new spectral degrees of freedom.
- RT modeling, retrieval simulations, and radiance assimilation studies (OSSEs) for GEM and other geomicrowave systems are in progress.