

Retrieving the effective radius of Saharan dust coarse mode from AIRS

Clémence Pierangelo¹, Michael Mishchenko², Yves Balkanski³, Alain Chédin¹

- Laboratoire de Météorologie Dynamique / IPSL (CNRS)
 Goddard Institute for Space Studies (NASA)
- 3. Laboratoire des Sciences du Climat et de l'Environnement / IPSL (CEA)

ITSC XIV - may 25th 2005, Beijing

Introduction

- IPCC 2001: Radiative forcing of dust aerosol poorly known
- dust size: a key parameter for shortwave radiative forcing
- In-situ measurements show a high variability [Reid et al., 2003]
- present **satellite** retrievals from *visible* radiances not yet satisfactory (MODIS) [Lévy et al., 2003]
- → New approach: characterization of dust size from high resolution *infrared* measurements (AIRS)

Dust size distribution

Bimodal lognormal distribution

- accumulation mode: r_a, σ_a
- coarse mode: : r_c, σ_c

4 parameters

$$n(r) = \frac{C}{r} \exp \left[\frac{1}{2} \left(\frac{\log(r) - \log(r_m)}{\log(\sigma)} \right)^2 \right]$$

-		1
$ \boxplus - \alpha = 0.41$ $- \boxtimes - \alpha = 0.36$		1
$ = - \alpha = 1.40$	·	$\tau_{440} = 0.7$
	1	1/1
	#	//
$\tau_{440} = 0.15$	100	<u></u>
	1/	ϕ_{c}
P >	2/	\ ▶电
	Ø 1	[[]
	10	10
0.1	1.0	10
	r_c	

Computations		Visible	Infrared	
	with Mie code	$(0.55 \mu m)$	(10 µm)	
	AOD acc / AOD coarse	1.0	0.08	

Exemple of bimodal aerosol size distribution (Dubovik et al., 200

-Advantage of the infrared: monomodal distribution

(coarse mode: Γ_c , σ_c)

2 parameters

Dust size distribution

σ_c=geometric standard deviation

No effect of the width of the size distribution

Choice: $\sigma_c = 2.2$

1 parameter

ightarrow Only one parameter is to be considered: coarse mode effective radius $r_{\rm e}$

Sensitivity study (1)

Difference between 2 AIRS channels BT 177 (8.14 µm) – BT 165 (9.32 µm):

- BT sensitive to atmospheric situation (temperature and gas profiles)
- 2. The impact of dust depends on the atmospheric situation

→ retrieving dust properties from infrared radiances first requires knowledge of the atmospheric situation

Sensitivity study (2)

Signature of dust (BT clear – BT dust) for 324 AIRS channels:

→ Effect of dust optical depth and dust layer altitude: a few K

Sensitivity study (3)

→ Effect of dust size and shape: a few tenths of K

Method: a 2-step process

Step 1

8 channels BTs

Pierangelo et al, ACP, 2004

Look-Up-Tables

atmosphere (TIGR) + dust AOD (at 10 μm) + dust altitude

BT 165(re)

calculated

BT 165 observed

Step 1: Results

Case study: Saharan dust over the Atlantic Ocean, April to June 2003

(Pierangelo et al., ACP, 2004)

Step 2: algorithm performance

60,000 simulations (changing atmospheric situation, dust AOD and altitude) Conditions: AOD > 0.2, altitude > 1300 m
Estimate of the error for a single retrieval: 0.5 to 1.5 µm

→ Good performance of the algorithm over the 1-5 µm range

Comparison with AERONET

coarse mode effective radius (µm)		April	May	June
	AIRS	2.02	2.27	2.14
AERONET	Spherical particles	1.67	1.78	1.67
(Capo-Verde)	non spherical particles	1.89	1.71	1.67

Possible reasons for discrepancies:

- -only 2 to 5 days per month for AERONET and AIRS (not the same!)
- -AERONET: day-time, AIRS: night-time
- -AERONET less sensitive to bigger particles (*size parameter* ≈ 15), may explain overestimation

→Good agreement with climatological value (2.15 µm) [Tanré et al., 2001]

Results: comparison with GCM

LMDz-INCA: mass median diameter for a monomodal distribution AIRS: effective radius for the coarse mode

- East-west gradient: preferential settling of big particles (2.4 to 2 μm)
- AIRS sizes decrease more abruptly than LMDz-INCA: accumulation mode less sensitive to dry deposition than coarse mode
- 30°N: higher radius for both
 AIRS and LMDz-INCA

Conclusions

- New method to constrain dust size distribution
- First time that dust size is retrieved from infrared radiances
- Results for April to June 2003 in good agreement with in situ measurements
- •Reduction of the coarse mode effective radius of dust particles with transport distance (2.4 to 2 μm)
- Geographical pattern in agreement with LMDz-INCA simulations
- Promising extension to IASI (higher spectral sampling)
- Possibility to retrieve other microphysical properties: dust aspect ratio, or composition (e.g. quartz content) could be retrieved with the same procedure?