Use of MODIS imager data to help dealing with AIRS cloudy radiances

Mohamed Dahoui*, Lydie Lavanant**, Florence Rabier***, Thomas Auligné***

* Moroccan Meterological Service
** Météo-France/DP/CMS/R&D
*** Météo-France/CNRM/GMAP

Purpose and methodology

⇒prepare AIRS day1 assimilation of clear radiances at Météo-France

- need of a robust and efficient clear detection scheme
- low computer cost

→start the study of a high spectral resolution cloud mask model

- 1. MODIS cloud mask
- 2. collocation of MODIS and AIRS granules
- 3. cloud status of all AIRS ifov with MODIS cloud info.
- 4. Bias correction of AIRS measurements
- 5. AIRS cloud detection with NESDIS, ECMWF, CO2-slicing, MLEV
- 6. AIRS cloud top pressure with CO2-slicing, MLEV models
- 7. Visual comparison and statistics
- 8. Cost execution time
- 9. Conclusion and perspectives

- Area : North East Atlantic
- Périod : 10 to 20 April 2003 -> 35 granules
- 10 -> 15 April used as training period for thresholds, bias coefficients ...
- Data : MODIS , AIRS and AMSU
- Sea situations

MODIS Cloud mask (MF/CMS, LeGléau, Derrien)

Adaptation to MODIS of NWC SAF cloud mask for SEVIRI

For each MODIS pixel, gives:

- Clear/cloudy flag
- Cloud type
- Cloud top temperature and pressure
- Snow/ sea ice (clear pixels)

Thresholds tests series of various channels combinations to each fov:

- test series depend on surface type (land, sea), solar zenith angle (day, twilight, night), specular reflection during the daytime
- thresholds depend on :
 - measurement conditions (solar and local zenith angles)
 - environmental conditions from external information (atlas, forecast)
 - satellite through off-line tables depending on channels filters

Cloud level: radiance ratioing + H2O/IRW intercept methods

MODIS and AIRS mapping

Objectives :

Determine the number of cloud layers, their cloud type, coverage and top temperature in AIRS ifov using the MODIS cloud mask mapped in AIRS ifov

Principe :

- Based on MODIS and AIRS navigation data and scan geometry
- adjustment in line and pixel of MODIS and AIRS through statistics on differences between AIRS simulated radiances for MODIS 32 filter
- Precise if ov adjustment also tested with VIS/NIR AIRS imager
- From pixel MODIS cloud type + temperature characteristics, determine the number of cloud layers (3 max)
- Situation = clear if < 5% MODIS pixels are cloudy

MODIS and AIRS mapping

MODIS CLOUD TYPE ; DATE= 2003104.1310

AIRS bias correction

Systematic errors between observed and simulated radiances from :

- errors in the radiative transfer model
- instrument measurement/calibration problems
- errors in NWP fields

Model used for bias correction for channel j:

$$A_0(j) + \sum_{i=1,8} (A_i(j) * (y_i - y_i)) + A_9(TWVC - \overline{TWVC}) + A_{10}(T_s - \overline{T_s}) + A_{11}* \sec y = AMSU 6, 8,9,10,11,12,13,14$$

Coefficients computed from MODIS clear detected situations on training period

Applied on each AIRS situations before AIRS cloud detection

AIRS bias correction

NESDIS AIRS cloud detection (Goldberg and Zhou, 2002)

Purpose: detection of clear situations very fast model

Based on a combination of 3 tests on AIRS channels: pre-launch coefficients

1. AIRS_2112_sim - AIRS_2112 (2391 cm-1) < Thres1 (2K) AIRS_2112_sim= fct(AMSU4, AMSU5, AMSU6, secant)

and

- 2. AIRS_2226 (2532cm-1) AIRS_843 (937.92cm-1) < Thres2 (10K) (night)</p>
- 3. Thres3 < SST_guess SST_sim < Thres4

SST_sim=fct(AIR_791, AIRS_914, AIRS_1285, AIRS_1301) 791=918.747cm-1; 914=927.122cm-1; 1285=1228.225cm-1; 1301=1236cm-1

NESDIS cloud detection: Test3 thresholds values

Period: 10 - 20/04/2003 - 14700 collocations **MODIS** clear data: 86% -> -0.6K < ∆SST< 3K 97% -> -0.6K < ∆SST< 4K $99\% \rightarrow -0.6K < \Lambda SST < 5K$

MODIS cloudy data: 89% -> ASST> 6K 93% -> ∆SST> 5K 98% -> ∧SST> 3K

Thresholds used: **Thres3**= -0.6KThres4= 3.3 K

5. In each band, a threshold is applied on

In each band, a threshold is applied on the gradient of the filtered O-G.

ITSC13 – 29/10/2003

Purpose: Detection of clear channels above the cloud layer

ECMWF AIRS cloud detection (McNally and Watts, 2003)

Observed - computed radiance departures

RTTOV-7 and NWP background used for simulating the AIRS clear radiances for each level, each situation, 281 selected channels

steps:

- Each channel is associated to the first pressure level p for which: |Rcld(p)-Rclr|/Rclr > 0.01
- 2. Channels are ranked according to the assigned pressure level- > channel index
- 3. 5 spectral bands (15, 9, 6, 4.5, 4.2 μ m)
- 4. O-G function of channel index
- 5. low-pass filter applied on O-G > channels with O-G < noise are discarded

(example for LW band from AIRS focus day)

CO2-Slicing method (Menzel and Stewart, 1983)

Purpose: Detection of clear situations and determination of cloud top pressure

RTTOV-7 and NWP background used for simulating the AIRS clear radiances for each level, each situation, 124 selected channels (among the 281) in CO₂ band [649.61 – 843.91cm-1]

 $Fv,p=[(Rclr - Robs)_{v} / (Rclr - Robs)_{ref}] - [N\varepsilon_{k} (Rclr - Rcld(p))_{v} / N\varepsilon_{ref} (Rclr - Rcld(p))_{ref}]$

Robs: measured radiance Rclr, Rcld(p): computed clear radiance and black-body radiance at level p v= AIRS channels in CO₂ band Ref= reference channel = 979.128 cm-1

+ For each channel v: Pc(v) = pressure which minimises Fv,p

Pc = Σ (pc(v) * W(v)²) / Σ W(v)² with W(v) = δ Fv,p / δ Inp

+ effective emissivity : $N\epsilon = (Rclr - Robs)_{ref} / (Rclr - Rcld)_{ref}$

→ rejection if (*Rclr* - *Robs*) < radiometric noise or $N\epsilon$ < 0 or $N\epsilon$ > 1.1

Minimum Local Emissivity Variation method

From: Huang and al

Purpose: Detection of clear situations and determination of cloud pressure

RTTOV-7 and NWP background used for simulating the AIRS clear radiances for each level, each situation, all channels in CO_2 band

Assumption: low spectral variation of the cloud emissivity in CO_2 band.

Local variance: $\operatorname{Var}_{\operatorname{loc}}(v) = \Sigma [\operatorname{N}\varepsilon(v) - \operatorname{moy}(\operatorname{N}\varepsilon(v))]^2$ in $[v - \Delta v/2, v + \Delta v/2]$ with $\Delta v = 5$ cm-1 $\operatorname{N}\varepsilon(v) = (R_{obs}(v) - R_{cl}(v)) / (R_{cld}(v) - R_{cl}(v))$

 $\begin{array}{l} {\sf R}_{obs},\,{\sf R}_{cl}: observed \mbox{ and }{\sf RTTOV-7} \mbox{ synthetic clear radiances} \\ {\sf R}_{cld}: \mbox{ black-body radiance at pressure level p} \\ v \mbox{ in [750 - 900 cm-1] ; best sensitivity to variations of Pc and NE(v)} \end{array}$

Pc pressure that minimizes the mean value Σ [Var_{loc}(v)]

Remark: no use of W(v) = δFv ,p / δInp channel sensitivity to pressure ITSC13 – 29/10/2003

9401

320'

601

60°

60'

NF

Cloud characterization

AIRS Cloud top pressure derived by MLEY methods

29036() 8 Grands (45 (4c))

Validation: Clear/cloudy AIRS ifov detection

Statistics from 16 – 19 April, 2003

Clear AIRS ifov detection

Day: 2799 sit. Night: 5470 sit.

Cloudy AIRS ifov detection

Day: 28510 sit. Night: 57719 sit.

Validation: Cloudy AIRS ifov detection

Validation: Cloudy AIRS ifov detection

Validation: Cloud top pressure

Statistics from 16 – 19 April, 2003

Conclusions and perspectives

- 1. For all schemes, synoptic cloud patterns are detected.
- 2. Cloud and Clear detection:
 - For all schemes, general good agreement with MODIS cloud mask above 900hPa
 - For all schemes, poor sensitivity to clouds near the surface and for fractional and unclassified clouds
 - ECMWF and CO2-slicing give similar results.
 - NESDIS pre-launch model is less efficient for thin semi-tranparent and fractional clouds -> thresholds depending on location (atlas, forecast) could help
 - MLEV is more sensitive to the measurement noise -> less efficient for detecting low level and fractional clouds
- 3. Cloud top pressure:
 - For multi layers situations, both methods see the highest layer
 - MLEV: good coherence with MODIS even for small fraction

