Assimilation of data from AIRS for improved numerical weather prediction

Andrew Collard¹, Roger Saunders¹, James Cameron¹, Brett Harris², Yoshiaki Takeuchi³, Lisa Horrocks¹

- ¹ Met Office, UK
- ² Bureau of Meteorology, Australia
- ³ Japan Meteorological Agency

AIRS data processing at the Met Office

Bias Correction

- Biases vary with scan angle
- Biases vary with "air-mass"
- Biases are channel dependent

- Air-mass bias predictors
 - brightness temperature
 - 200-50 hPa thickness
 - 850-300 hPa thickness

16 January - 15 February 2003, AIRS channel 150 (692.8 cm⁻¹ / 14.4 μm)

Channel Selection

- 324 AIRS channels supplied
- Assimilate a subset of 71 (day) or 86 (night)
- Choose those with highest impact on degrees of freedom for signal (Rodgers, 1996)

Variational Cloud Detection

Cloud Cost: Attempt to determine the probability of having cloud in the field of view, given the observed radiances and the NWP background profile (English, Eyre and Smith, 1999)

Cloud Detection Verification (1/4):

GOES-W Images. 21/9/03 21.30Z

Focus on region of low thin cloud off western USA.

Cloud Detection Verification (2/4): AIRS Visible Imager

Image is AIRS Visible Imager Channel 4. 21st Sept. 2003 ~21.30Z

*=AIRS "Clear" FOV . =AIRS "Cloudy" FOV

Cloud Detection Verification (3/4): Detail from previous slide

Blue : Low Albedo

Orange: High Albedo

- Cloudy?
- Clear?

122°W

120°W

Point from previous page seems to be clear

Cloud Detection Verification (4/4): AIRS Imager, Off the coast of Washington

Top number is O-B in LW Window

Bottom number is Cloud Cost

Circled obs are designated clear

Here there are some erroneous clears on edge of thin, low cloud.

This region has high O-B:
Almost certainly real SST error

1D-Var Cost Distribution

1D-Var Cost Function Value

Initial AIRS Assimilation Trial

- 16th December 2002 13th January 2003
- Main AIRS trial run started in August 2003
 - Currently we have reached 5th January
- Headline verification score is NWP index
 - We are currently seeing improvements of 0.5% when verified versus sondes and surface obs.;
 0.7% versus analysis fields.
- Here we present rms forecast errors for the 500hPa height.

Change in Forecast Errors: 500hPa Height at 24 hours

Change in Forecast Errors: 500hPa Height at 72 hours

Change in Forecast Errors: 500hPa Height at 120 hours

Future Work

- Improve cloud detection
 - Revisit channel choice for cloud detection
 - Look into implementing PCA approach
 - AIRS visible imager data (during daytime)
- Continue investigation of bias correction
- Use of advanced sounder data over land
 - Start by using channels that do not see the surface
- Assimilation of cloudy infrared data
 - Use 1DVar step to try to infer cloud optical properties before assimilation

Conclusions

- Day-1 processing system in place
 - System is designed to be very conservative.
- Cloud detection system being investigated
 - Some tuning may be required
- Initial trial results show neutral to positive impact.
- We will run a second trial for July 2003 on our new NEC SX-6 supercomputer
 - should be much faster!
 - If also neutral or positive AIRS should be operational by March 2004.

