Impact of the ATOVS data on the Mesoscale ALADIN/HU model

Roger RANDRIAMAMPIANINA and Regina SZOTÁK

roger@met.hu

Hungarian Meteorological Service Budapest Hungary

• Introduction: motivation

Pre-processing of ATOVS data - implementation

• Impact study

Conclusions and further experiments

motivation:

Operational system: dynamical adaptation

→ initial file from ARPEGE

Our GOAL: → To build a variational analysis system

→ uses as much as possible observations

Randriamampianina and Rabier (2002)

- → very encouraging results concerning the impact of locally received and pre-processed ATOVS radiances
- → To investigate the use of ATOVS data in ALADIN/HU

- The bias correction file is computed locally (Harris and Kelly 2001)
- Radiances and channel selection: (AMSU-A)

Channel number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Over Land					X	х	X	X	X	X	X	X			
Over Sea					X	X	X	X	X	X	X	X			
Over Sea ice							X	X	X	X	X	X			
Cloudy pixel								X	X	X	X	X			

ALADIN/HU model and its assimilation system:

Model: - Hydrostatic (AL15, CY24T1)

- Resolution: 6.5 km

- 37 vertical levels

3D-Var:

- Background error covariance mati

→ compu

- Simulation of radiances RTTOV-6
- 6 hour assimilation cycling: 00, 06, 12 and 18 UTC
- Coupling: ARPEGE long cut-off analysis
- ATOVS from NOAA-15 (06 and 18 UTC) and

NOAA-16 (00 and 12 UTC)

- AMSU-A (T \pm 3hour)

Forecast:

- 48h from 00 UTC

Experiments:

Period: 2003.02.20 – 2003.03.06; **Thinning techniques**: 80 and 120 km

Control: 3D-Var with TEMP and SYNOP

Verification:

- Comparison of forecasts → with TEMP and SYNOP observations

→ with the ARPEGE analyses

First experiments:

Default configuration: multivariate formulation for all control variables:

(vorticity, divergence, temperature and surface pressure, specific humidity)

-*T8000*: TEMP, SYNOP and AMSU-A (80km);

-T1200: TEMP, SYNOP and AMSU-A (120km);

- Aladt: TEMP and SYNOP;

Assimilation of radiances (2003.02.20 – 2003.03.25):

Results (comparison with obs): multivariate formulation

dashed red line: t8000 and solid line: aladt

Second experiments:

The *specific humidity* assimilated separately from all control variables (*in univariate form*) (vorticity, divergence, temperature and surface pressure)

-Touhu: TEMP, SYNOP and AMSU-A (80km);

-12uhu: TEMP, SYNOP and AMSU-A (120km);

- Aluhu: TEMP and SYNOP;

Results (comparison with obs): specific humidity assimilated in univariate form

Relative humidity:

Dashed red line: Touhu

Solid line: T8000

Dashed red line: aluhu

Solid line: aladt

Results (comparison with obs): specific humidity assimilated in univariate form

dashed red line: touhu and solid line: aluhu

Results (comparison with obs): Influence of resolution

Dashed red line: 80km

Solid line: 120km

Specific humidity in univariate form

Relative humidity (%)

→ assimilate AMSU-A in 80 km resolution in further experiments

Impact study – selected cases:

Selected Cases:

Impact study – selected cases:

Impact study – selected cases:

Results: comparison with ARPEGE long cut-off analysis

Forecast range (h)

Results: comparison with ARPEGE long cut-off analysis

RMSE(aluhu-touhu)
Temperature

48h forecast, T500

Results: comparison with ARPEGE long cut-off analysis

Conclusions and further _{0.30}

- Problem related to the forecas

 → to assimi 0.20

 → to change
- The assimilation of AMSU-A in general BUT the positive in 0.00
- The impact of AMSU-A data a that of 120 km resolution:

→ further in

- The impact of the AMSU-A da
- The impact of the AMSU-A dathe lower levels:

→ recomme

Assimilating the specific humi
 of geopotential: → To put back

Period: 20030418...20030422

Network: 0UTC

Level 700 mb

n

Thank you for your attention