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Introduction

The ensemble Kalman filter (EnKF) is a 4D data assimilation method that uses a

Monte-Carlo ensemble of short-range forecasts to estimate the covariances of the forecast

error (Evensen 1994; Burgers et al. 1998; Houtekamer and Mitchell 1998). It is a close

approximation to the standard Kalman filter. The approximation becomes more accurate

as the ensemble size increases.

The EnKF is conceptually simple. It does not depend strongly on the validity of

hypotheses about the linearity of the model dynamics and requires neither a tangent

linear model nor its adjoint. In addition, it parallelizes well.

Like most modern data assimilation methods, the EnKF directly assimilates observed

radiance data. This aspect of the EnKF, and in particular the assimilation of AMSU-A

microwave radiances, is the focus of this presentation.

First, the EnKF and the experimental environment are briefly described. Then we

focus on how the EnKF assimilates the AMSU-A microwave radiances and show some

results indicating their impact with the EnKF (including a comparison with similar

results from a 3D-Var system). The present text ends with some concluding remarks

and a brief outline of our future plans in this area.

The EnKF

For ensemble member i, the EnKF equations can be written as

Ψa
i = Ψf

i + K(oi − H(Ψf
i )) (1)

Ψf
i (t + 1) = M(Ψa

i ) + qi (2)

where

Ψa : analysis field,

Ψf : first-guess (forecast) field,



oi : vector of (perturbed) observations,

H : interpolation operator (may be nonlinear),

K : gain matrix,

t+1 : the next analysis time,

M : full (nonlinear) forecast model,

qi : representation of model error.

The gain matrix, K, determines how much weight is given to the innovation, oi −

H(Ψf
i ), vis-a-vis the forecast (or first-guess) field, Ψf . As in the standard Kalman filter,

the gain matrix is defined as

K = PfHT (HPfHT + R)−1, (3)

where R is the observational error covariance matrix.

Unlike the standard Kalman filter, the EnKF uses a random ensemble to estimate

error covariances, i.e.,

PfHT
≡

1

N − 1

N∑

i=1

[Ψf
i − Ψf ][H(Ψf

i ) − H(Ψf )]T (4)

HPfHT
≡

1

N − 1

N∑

i=1

[H(Ψf
i ) − H(Ψf )][H(Ψf

i ) − H(Ψf )]T . (5)

Note that since H is applied to each background field individually (rather than to

the covariance matrix Pf ), it is possible to use nonlinear operators. For example, H can

be a radiative transfer model if radiance observations are available.

Localization

Correlations associated with remote observations tend to be small and difficult to

estimate using small ensembles. To filter covariances at long distances, we use a Schur

product (i.e., an elementwise product of two matrices), as described in Houtekamer

and Mitchell (2001). That is, instead of directly using covariances calculated from the

ensemble, we filter any such covariances using

Pf (ri, rj) = ρ(r, L) ◦ Pf
ensemble(ri, rj), (6)

where ρ is a correlation function with compact support and ◦ denotes the Schur product.

This leads to a positive definite matrix Pf (Gaspari and Cohn 1999). Here r is the

distance between points ri and rj and L is the distance beyond which the correlation

function, ρ, is zero. Our rationale is that as ensemble sizes increase in the future (for



example, with increases in the available computational power), it will be possible to

increase L and thereby relax the localization.

In fact, the EnKF never computes the covariance matrix Pf ; to calculate the gain

matrix, K, only PfHT and HPfHT are required. By applying covariance localization

separately in the horizontal and in the vertical, we are effectively using the following

modified definition of the gain matrix

K = [ρV ◦ ρH ◦ (PfHT)][ρV ◦ ρH ◦ (HPfHT) + R]−1. (7)

Here ρH and ρV are the correlation functions used for horizontal and vertical localization,

respectively, and PfHT and HPfHT are computed from the ensemble using eqs. (4) and

(5), respectively. Actually, rather than using a single ensemble, we use a configuration

consisting of a pair of ensembles, as proposed in Houtekamer and Mitchell (1998). Having

two ensembles allows the Kalman gain used for the assimilation of data into one ensemble

to be computed from the other ensemble.

Currently, the vertical localization forces covariances to zero in 2 units of ln (pres-

sure). Thus, for example, the covariances associated with a 1000-hPa observation fall to

zero at 135 hPa, while those associated with a 10-hPa observation fall to zero at 74 hPa.

The Experimental Environment

The EnKF used here has been developed in a series of studies in increasingly realistic

environments starting with the 3-level quasigeostrophic model used by Houtekamer and

Mitchell (1998) and Mitchell and Houtekamer (2000). For the past few years, we have

been using the Canadian Global Environmental Multiscale (GEM) primitive equation

model (Côté et al. 1998): initially, a dry 21-level version to assimilate simulated ob-

servations (Mitchell et al. 2002) and, more recently, a 28-level version that includes a

complete set of physical parameterizations to assimilate real observations (Houtekamer

et al. 2003).

Our approach with the EnKF has been to use those observations accepted by the

Canadian operational global 3D-Var. As discussed in Houtekamer et al. (2003), this

facilitates comparisons with the operational system and allows the EnKF to make use

of the operational: (i) “background check” and QCVAR, (ii) TOVS monitoring and bias

correction, and (iii) horizontal thinning of TOVS observations.

Currently, of the observations assimilated by the 3D-Var, the EnKF assimilates the

following:

• from radiosondes: u, v, T, q, psurface;

• from aircraft: u, v, T ;

• from satellites: cloud track winds u, v, and AMSU-A microwave radiances;

• surface observations: T, psurface.



The EnKF uses the same observational error statistics as the operational 3D-Var.

This, too, facilitates comparisons with the operational system.

Assimilation of AMSU-A Microwave Radiances

For the calculation of simulated radiances from a model state vector, the EnKF (like

the Canadian operational 3D-Var procedure) uses the RTTOV radiative transfer model.

RTTOV-6 (Saunders et al. 1999, Saunders 2000) was used for the experiments presented

here, although we have subsequently converted to RTTOV-7. Our implementation of

RTTOV is very much based on its use in the operational 3D-Var (Chouinard et al.

2002). Since it uses eqs. (1), (4), (5), and (7) to assimilate observations, the EnKF

requires neither the tangent linear nor the adjoint of the radiative transfer model.

Using only observations accepted by the operational 3D-Var, the EnKF assimilates

AMSU-A channels 3–10 over open ocean and from three to five of these channels over

land and ice depending on the height of the topography, as described by Chouinard et

al. (2002). In addition, the AMSU-A observations used operationally are thinned to a

horizontal resolution of ∼ 250 km.

The results shown below are from data assimilation cycles over a 2-week period in

May - June 2002. During this period, AMSU-A observations were available from two

polar orbiters, NOAA-15 and NOAA-16. Due to the horizontal thinning of the AMSU-A

observations, approximately 3000 profiles were available for assimilation every 6 h from

each of these two satellites.

Results from Two Experiments

The first experiment is a TOVS/NOTOVS experiment. Results are evaluated by

verifying 6-h forecasts against radiosonde observations. The evaluation is performed

over a 5-day period, after a 5-day spin-up. In this experiment, the horizontal grid is 144

× 72, the EnKF uses a total of 96 ensemble members, and the correlation function used

for localization in the horizontal falls to zero at 2300 km.

Results show a neutral to modest improvement in the Northern Hemisphere (not

shown). A more substantial positive impact of the AMSU-A observations is observed

in the tropics and in the Southern Hemisphere. The Southern Hemisphere results are

presented in Fig. 1. It can be seen that assimilation of the AMSU-A profiles results in

generally smaller biases and standard deviations (std dev) for all five variables.

The second experiment is a 3D-Var/EnKF comparison. Both methods have been

used to assimilate exactly the same set of observations, using the same observational

error statistics. The same forecast model (resolution, physical parameterizations, etc.)

has been used for both methods. For this experiment, the horizontal grid is 240 × 120;



the EnKF uses a total of 128 ensemble members; and the correlation function used for

horizontal localization in the EnKF falls to zero at 2800 km. Houtekamer et al. (2003)

present verifications of 6-h forecasts and analyses against radiosonde observations for

this experiment. Here we examine verifications against the AMSU-A data.

Figs. 2 and 3 show O - P and O - A statistics for each AMSU-A radiance channel for

the 3D-Var and EnKF assimilation cycles, respectively. A comparison of corresponding

panels from the two figures indicates that the current version of the EnKF yields larger

std dev values than the 3D-Var, especially for channels 3, 9, and 10. The EnKF also

produces larger biases than the 3D-Var system, perhaps because the AMSU-A data is

bias corrected using the latter system. The results, while encouraging, indicate that

there is considerable room for improvement with respect to the EnKF assimilation of

the AMSU-A data.

Conclusions

An EnKF has been developed for atmospheric data assimilation. It is to be used as

the data assimilation component of the Canadian operational medium-range Ensemble

Prediction System. Results with real observations indicate that the EnKF can be used

to assimilate AMSU-A microwave radiances.

Work is continuing aimed at improving the assimilation of the AMSU-A microwave

radiances in the EnKF. Among the aspects that we intend to examine are: the effect of

the vertical/horizontal localization; the necessity for EnKF-specific (a) QC, (b) moni-

toring, and (c) bias correction procedures; the desirability of adjusting the observational

error specification, including the possible inclusion of observational error correlations. We

also intend to assimilate other types of radiance data, e.g., AMSU-B, with the EnKF.
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vice regarding the assimilation of the AMSU-A radiances. We also thank Chantal Côté

for generating Figs. 2 and 3.



Figure 1: Verification scores for the ensemble mean for the first experiment. The mean

value, i.e., bias, (dashed) and std dev (solid) of the observed minus interpolated 6-h

forecasts are shown for the assimilation cycle with AMSU-A data (in red) and without

AMSU-A data (in blue) for the region south of 20◦ South.



Figure 2: Observed minus analysis (O - A, blue) and observed minus 6-h forecast (O -

P, red) for AMSU-A channels 3–10 for the 3D-Var assimilation cycle.



Figure 3: As in Fig. 2, but for the ensemble mean of the EnKF assimilation cycle.
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