Contribution of POLDER to Water Vapor observation

Michèle Vesperini Laboratoire d'Optique Atmosphérique UMR CNRS/Université de Lille 1, FRANCE

POLDER1 algorithm
examples of use
POLDER2 algorithm
experimental results over dark surfaces

POLDER instrument:

Polarization and Directionality of Earth Reflectances

Onboard ADEOS-1 (NASDA-CNES) and ADEOS-2

- sunsynchronous ~ 10h30
- swath ~ 2400 km
- full resolution 6 -7 km; products @ 20km2 or 60 km2

November 1996 to June1997 April 2003 until now

solar domain: 443^P, 490, 565, 670^P, 763, 765, 865^P, 910 nm

for water vapour: 865 nm et 910 nm

differential absorption

absorption contrast

between 865 & 910 nm (clear sky)

white surface hypothesis

Rsurf910 ~ Rsurf865

$$X = \frac{R_{910}}{R_{865}} \approx \frac{t_{910}}{t_{865}}$$

Total Column Water Vapour content

$$TCWV = U = \int_{0}^{p_{surf}} \frac{q(p)}{g} dp$$
 (kg.m⁻²)

polynomial fit

$$m \cdot TCWV = a2 \ln(X)^2 + a1 \ln(X)$$

two-way air mass

$$m = \frac{1}{\theta_{\odot}} + \frac{1}{\theta}$$

polynomial fit

$$m \cdot TCWV = a2 \ln(X)^2 + a1 \ln(X)$$

coefficients from radiative transfert simulations

POLDER 1: Validation

CLASSE 1: OCEAN POLDER-SSMI matches with IQ2 < 2

overestimation of large contents

POLDER 1: Validation

overestimation of large contents

HITRAN 1992 > HITRAN 2000

POLDER 1: Validation over land

surface bias underestimation of small contents

POLDER 1: Validation over land

surface bias underestimation of small contents

off line surface correction

fct (R865/R765)

off line correction

RMSE = 2.8 kg/m² < radiosondes ~ 5 kg/m²

retrieval limitations

near-infrared solar domain

daytime only

1 obs per day only

absorption based technique small scattering effects

clear sky only

high surface-reflected signal /scattering effects

land and ocean glitter

POLDER water vapor content

LAND: valuable spatial coverage (clear sky)

OCEAN: ~ 1/3 of the swath (clear sky and glitter)

Comparisons to meteorological analyses

ECMWF - POLDER (1996-1997)

assimilation experiments

Manouvrier and Vesperini, LOA & Meteo France, 2000

POLDER CLASSE 2 algorithm

calibration over ocean glitter targets reference to SSMI F10 - Wentz algo version 5

(kg.m⁻²)

POLDER CLASSE 2 algorithm:

for selected clear sky glitter scenes (POLDER lev1 / SSMI)

weak absorption:

$$m.U_{h20} = a_2 \ln(X)^2 + a_1 \ln(X)$$

strong absorption:

$$m.U_{h20} = a_2 \ln(X)^2$$

POLDER CLASSE 2: land surface correction

conclusion and perspectives

POLDER water vapor (total column)

experimental algorithm over ocean in any geometry

operational product over land or in glitter geometry

clear sky

daily (1 a day)

~ 3 kg/m² precision

sensitive to the lower troposphere

to complement sounding instruments

conclusion and perspectives

African Monsoon Multidisciplinary Analysis project need for water budget

provide fine scale humidity analyses over land and ocean

differential absorption retrievals over land (POLDER/MODIS/MERIS)

+ μ wave and IR sounding

Differential Absorption Technique Over Ocean

in any viewing geometry small reflectance for the surface

coupling between scattering and water vapor absorption Instrument noise on top-of-atmosphere signal

Effects of Aerosol Scattering

All cases

As a function of _a and Ha.

Water vapor over land and ocean

Water vapor content:

Continuity between land and ocean is observed

Comparisons with SSMI data

Histogram: SSMI -POLDER

Comparisons SSMI/POLDER

Mean $\sim + 1.8 \text{ kg/m}^2$: due to the accuracy of the radiative transfer code RMS error $\sim 4 \text{ kg/m}^2$: overestimation of large contents

Radiative Transfer Modeling

Radiative transfer code: GAME

- Absorption: correlated k-distribution from a Line-By-Line (LBL) code for gaseous absorption
- Spectral resolution: 10 cm⁻¹.
- HITRAN 2000 spectroscopic database
- CKD2.4 parameterization for the water vapor continuum
- Discrete Ordinates Method (DOM) for absorption, emission and multiple scattering processes.
- Sea-surface reflectance: specular and diffuse reflection

Differential Absorption Technique Over Ocean

Reflectance Ratio calculated with the GAME code:

Without aerosol

Rayleigh scattering

Over Land or Ocean

Solar angle $0 < _s < 60^\circ$

View angle $0 < v < 60^{\circ}$

$$4 < U_{h2O} < 60 \text{ kg/m}^2$$

Effects of Aerosol Scattering

Aerosol properties:

Optical Thickness:

_a (550nm): 0.1 to 0.3

Maritime model (Mie theory)

Scale Height H_a: 1 and 3 km

Aerosol Scale Height

POLDER oxygen bands:

At 863 and 865 nm Estimate of the surface pressure P_s

From the airmass m and the reflectance ratio R(863/865nm)

Inversion Scheme

Look-Up-Tables: calculated with the radiative transfer code polynomial regressions for:

$$mU_{h2o} = R_{H2O} (910nm/865nm)$$

$$mP_s^2 = R_{O2} (763nm/765nm)$$

as a function of _a is and Ha

- R_{H2O} and R_{O2} are deduced from POLDER data
- _ _a is a POLDER product
- H_a is estimated from an iterative procedure when:

$$P_{app}(H_a) = P_s(ECMWF)$$

Study Case over East Asia

Polder scene over East Asia

25 PÓLDER, may 1, 1997, orb. 7217; LOA/CNES/NASDA 115 120 125 130 135 140 145 1

Reflectance and reflectance ratio in the POLDER channels at 865 and 910 nm

POLDER aerosol Product

Aerosol Optical thickness at 865 nm from the POLDER algorithm

Conclusion

POLDER water vapor (total column)

Operational product over land or in sunglint conditions

clear sky, daily (1 a day)

 $\sim 2 \text{ kg/m}^2 \text{ precision}$

Experimental algorithm over ocean:

first results: satisfactory agreement for a case study improvement of the method: line-by-line approach global validation to test the robustness of the method effects of thin clouds