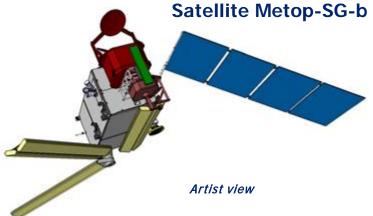

EUMETSAT Polar System - Second Generation

Peter Schlüssel

EPS-SG in-orbit configuration

Satellite-a Payload	METimage IASI-NG MWS 3MI Sentinel-5 RO
Dry mass	~ 2500 kg
Launch mass	~ 2900 kg
Power	~ 2.2 kW
P/L data rate	~ 60 Mb/s

EPS-SG space segment


Two-Satellite Configuration

Overall lifetime **21 years**

Earliest launch date (first satellite)

end 2020

Artist view

Satellite-b Payload	SCA MWI ARGOS-4 RO
Dry mass	~ 2000 kg
Launch mass	~ 2300 kg
Power	~ 1.6 kW
P/L data rate	~ 1.2 Mb/s

Orbit

Metop orbit @ 09:30 LTDN

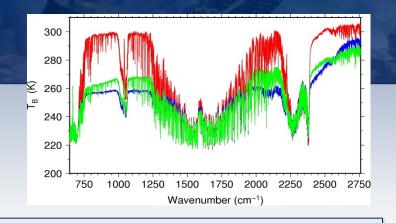
Phasing of Sat-a and Sat-b 180°

IASI-NG High-Resolution Infrared Sounding

Objectives

- Temperature/humidity profile at high vertical resolution
- Clouds, trace gases (O₃, CO, CH₄, CO₂,...)
- Sea/land/ice surface temperature
- Aerosols, Volcanic Ash

Heritage


IASI, AIRS

Baseline performance

as IASI

Implementation

Phase-A studies of IASI-NG by CNES

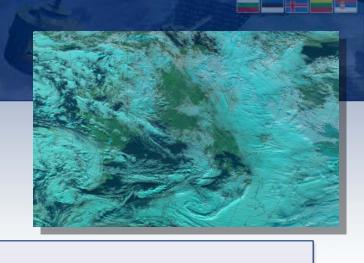
- Doubling of radiometric resolution of IASI for the benefit of weather forecast
 - 75% more information in temperature profiling, particularly PBL
 - 30 % more information in water vapour profiling
- Doubling of spectral resolution of IASI for the benefit of atmospheric chemistry
 - Quantification of trace gases which are currently only detected
 - Vertical resolution of trace gases instead of columnar amounts only

METimage VIS/IR Imaging

Objectives

- Hi-res cloud products, incl. microphysics
- Aerosols
- Polar AMVs
- Vegetation, snow, fire
- Sea/ice/land surface temperature
- Support to sounding missions

Heritage


AVHRR, MODIS

Baseline performance

VIIRS, MODIS
Consistency with VIIRS for common channels

Implementation

development of METimage by DLR

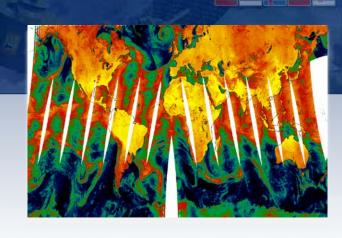
- Far more spectral channels (≥ 20) than AVHRR for the benefit of measuring more variables
- Higher spatial resolution (250 500 m):
 - more complete coverage through greater likelihood to measure surface variables in partly cloud conditions
- Better radiometric resolution for more accurate quantification of many variables

MWS Microwave Sounding

Objectives

- Temperature/humidity profiles in clear and cloudy air
- Cloud liquid water total column
- Imagery: precipitation

Heritage


AMSU-A, MHS

Baseline performance

as AMSU/A, MHS

Implementation

Development by ESA

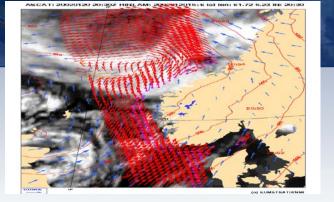
- Addition of a quasi-window channel at 229 GHz (recommended by ITSC-11)
 - Cirrus cloud information
- Addition of sounding channels
 - + 2 channels at 53-54 GHz
 - + 3 channels at 183.31 GHz
 - More information on temperature and water vapour profiles

SCA Scatterometry

Objectives

- Ocean surface wind vectors
- soil moisture
- snow equivalent water
- sea-ice type

Heritage


ASCAT

Baseline performance

as ASCAT

Implementation

ESA development

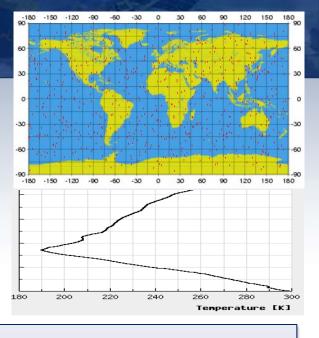
- Increase of spatial resolution to 25 km
 - Better approach of coast lines
- Increase of swath width to >1100 km
 - Enhanced coverage
- Addition of VH polarisation
 - Covers higher wind speeds without saturation, will benefit observation of tropical and extra-tropical storms

RO Radio Occultation Sounding

Objectives

- Refractivity profiles at high vert. resolution
- Temperature / humidity profiles
- PBL top and tropopause height
- Ionospheric electron content

Heritage


GRAS, COSMIC

Baseline performance

as GRAS (instrument)

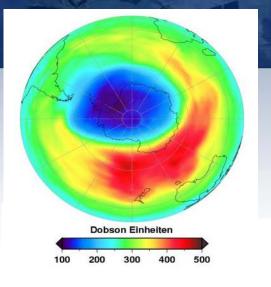
Implementation

Development by ESA

- Tracking of GPS and Galileo satellites to double the number of occultation measurements
- Equipment of both Metop-SG satellites with RO in case of a dual satellite configuration

Sentinel 5 Nadir Viewing UV/VIS/NIR/SWIR Sounding

Objectives


- Ozone profile and column
- Columns of CO₂,SO₂, NO₂, H₂O,CO, CH₄
- Aerosol optical depth
- Columns of BrO, HCHO, OCHCHO
- Volcanic Plumes

Heritage

GOME-2, SCIAMACHY, OMI

Implementation

GMES Sentinel-5 to be embarked on Metop-SG, ESA development synchronised with EPS-SG

- Drastically increased spatial resolution (7 km)
 - for the benefit of air quality monitoring
- Extended spectral range into the near and shortwave infrared regions
 - to measure aerosols as well as methane and carbon monoxide in the PBL

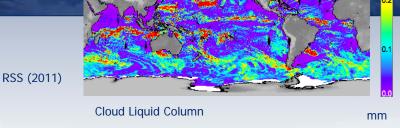
MWI

Microwave Imaging

Objectives of a new mission

- Precipitation and cloud products
- Water vapour profiles and imagery
- Sea-ice, snow, sea surface wind

Heritage


SSM/I(S), AMSR-E

Baseline performance

4 spectral channels as SSM/I (18.7 – 89 GHz)

Implementation

Development by ESA

Breakthrough: 19 channels

- Continuity of key microwave imager channels for weather forecast
- Inclusion of dedicated sounding channels
 - Enhanced precipitation measurements through inclusion of dedicated sounding channels
- Extension towards 183 GHz
 - water-vapour and cloud profiling

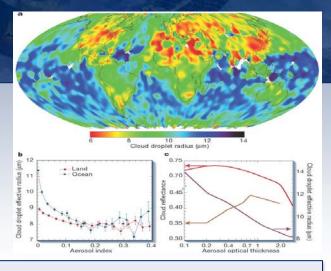
3MI: Multi-Viewing Multi-Channel Multi-Polarisation Imaging

Objectives of a new mission

- Aerosol optical thickness, particle size, type, height, absorption
- Volcanic Ash
- Cloud phase, height, optical depth
- Surface albedo

Heritage

POLDER PARASOL


Baseline performance

as POLDER

Implementation

Development by ESA

Kaufman et al. (2002)

- Enhanced spatial resolution (4 km)
 - Improves separation of cloudy areas
- 9-10 spectral channels, extending into the SWIR
 - Better aerosol characterisation
- Higher angular resolution (14 views)
 - Better phase function characterisation

Next Steps

- Completion of Preliminary Requirements Reviews (End of Phase A)
 - Done at system level
 - Space and Ground segments to follow
- Start of Phase B in Summer 2012
- Decision about ESA Metop-SG programme in Autumn 2012
- Decision about EUMETSAT EPS-SG programme in 2014

