

## **EVIVORSY** Neural Network Ozone Retrieval System

# First Result on Ozone Profile Retrieval From GOME-2 and IASI

Anton Kaifel, Roger Huckle, Martin Felder

Center for Solar Energy and Hydrogen Research (ZSW)
Baden-Württemberg

## **Outline**

- What do we not need
- What do we need
- Collocation GOME-2 and IASI
- NNORSY-GOME-2 ozone profile retrieval
- First results on NNORSY-GOME-2/IASI



## **Not Needed for NNORSY**

## Compared to classical retrievals schemes based on Optimal Estimation

- No a-priori profiles
- No forward model
- No spectroscopic database
- No high performance computers for real-time application



## **Needed for NNORSY**

- A representative training database
- A good neural network training algorithm

## **Neural network input:**

- selected parts of GOME-2 spectra
- selected parts of IASI spectra
- space-time info
- observation geometry
- Temperature profiles data helps



## **Some Results on NNORSY-GOME-2**







### **NNORSY-GOME-2 Profile Comparison** with Ozone Sonde **Station** NNORSY

**HOHENPEISSENBERG** (mid latitudes)

rel. comparison



## **GOME-2/IASI Collocation**

- GOME-2 footprints are base grid for retrieval
- Collocation in cooperation with NWP-SAF (Nigel)
- Collocation of AVHRR with GOME-2 pixels for cloud mask

#### Scan characteristics

|        | pixels / scan<br>line | scan time<br>[sec] | time / pixel<br>[sec] | forward scan viewing time [sec] |
|--------|-----------------------|--------------------|-----------------------|---------------------------------|
| IASI   | 30x4                  | 8                  | 0.216                 | 6.48                            |
| GOME-2 | 24                    | 6                  | 0.1875                | 4.5                             |



## **Approach for GOME-2/IASI Collocation**





→3 steps

for

## **GOME-2/IASI Collocation: Step 1**

Cross product AP1 x AB

**Cross product CP1 x CD** 

→ 2 resulting vectors orthogonal on pixel plain





## **GOME-2/IASI Collocation: Step 2**

#### Scalar product of resulting vectors

```
If parallel > 0
If antiparalle < 0
```

- → point is outside lines (e.g. P2)
- → point is between lines (e.g. P1)





## **GOME-2/IASI Collocation: Step 3**

Same procedure for vertical line pair

P2 is outside the first line pair, further investigation is therefore not necessary



Collocation is 5x faster than file reading (updated EUMETSAT readers)

## **Testorbit GOME-2/IASI Collocation**





# Testorbit GOME-2/IASI Collocation (magnified)



**GOME-2/AVHRR** collocation almost finished



## **First Results on Combined Retrieval**



- Plots show relative errors on test data set
- No ECMWF temperatures were used here
- IASI improves retrieval mainly below ozone peak
- Probably obviates need for temperature profiles from NWP analyses



## **Conclusion**

- NNORSY-GOME-2 ozone profile retrieval available
- New fast collocation scheme for GOME-2/IASI
- Collocation GOME-2 with AVHRR for cloud mask
- Combined one-step NNORSY-GOME-2/IASI retrieval improves ozone profile quality
- Easily adaptable for real-time application

