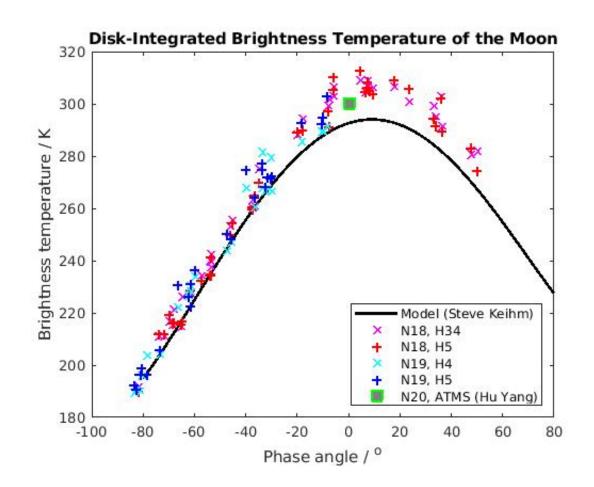

CHECKING BEAM PERFORMANCE OF HIRS AND MHS WITH THE MOON

Martin Burgdorf, Thomas Müller (MPI Extraterrestrische Physik, Garching), Marc Prange, Stefan Buehler

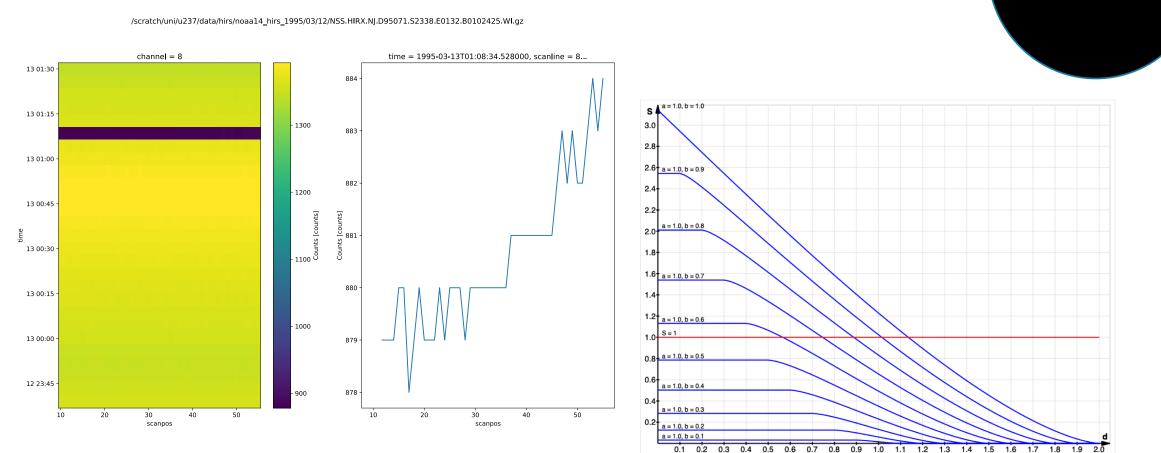
FOUR MHS DEEP SPACE VIEWS CLOSE TO MOON DURING ONE ORBIT

$$\Theta_{3dB} = FWHM \omega \sin \theta_p$$

ANTENNA PERFORMANCE — SPACE VIEW


MHS on NOAA-18 (Matra Marconi) MHS on NOAA-19 (Matra Marconi)

		CHANNEL								CHANNEL					
		Hl	H2	H34	H5	Accuracy	REQUIREMENT /			HI	H2	H34	H5	Accuracy	REQUIREMENT /
				184.3 GHz			COMPLIANCE			89.3 GHz	157.3 GHz	184.3 GHz	190.6 GHz		COMPLIANCE
0 3dB (°)	min	1.07	1.02	1.02	1.04	± 0.01	1.1±0.11/C		min	1.08	1.14	I.11	1.10		
	тоу	1.09	1.03	1.05	1.05			θ 3dB (°)	moy	1.10	1.15	1.12	1.12	± 0.01	1.1 ± 0.11 / C
	max	1.12	1.05	1.08	1.06				max	1.11	1.16	1.14	1.15		


40 \rightarrow Intrusions: 1.20 1.10 1.25 1.26 \pm 0.01 3 x NC 25 \rightarrow Intrusions: 1.20 1.16 1.29 1.28 \pm 0.01 3 x NC

LUNAR MICROWAVE Brightness temp. For Different phase angles

- Orbit drift with NOAA-18 and NOAA-19 =>
- Local Equator Crossing Time changes =>
- Phase angle of Moon in DSV changes
- MHS: 2 channels at 183 GHz, one at 190 GHz
- Agreement within uncertainties
- Situation is similar at 89 GHz

MOON IN FOV OF HIRS DURING DEEP SPACE CALIBRATION

Moon

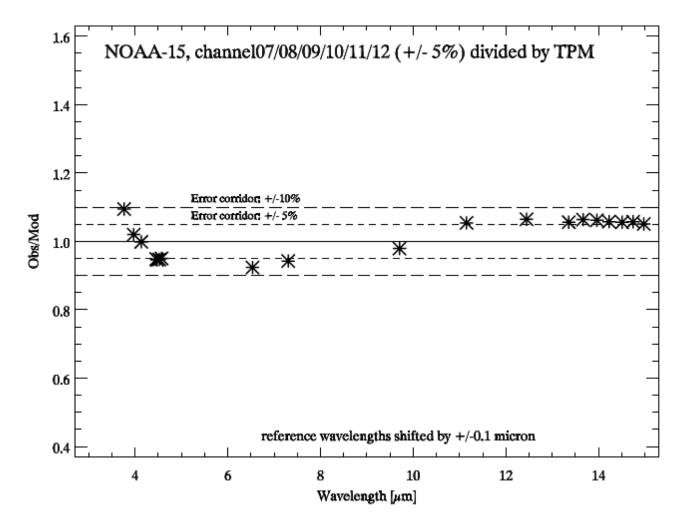
HIRS/4

FOV

THE MOON WAS OBSERVED WITH HIRS/2, /3, AND /4

- The flux density received from the Moon depends on the FOV².
- If one FOV is known, the Moon gives the diameter of all others.
- Web sites, journal articles and books give different values.
- Which one is right?

	HIRS/2	HIRS/3	HIRS/4	
AAPP Sci. Description	1.25°	1.25°	0.72°	
NOAA KLM User's Guide		1.4° (SW) 1.3° (LW)	0.7°	
ESA metop Performance	1.25°	1.25°	1.4° (S₩) 1.3° (L₩)	
OSCAR (WMO)	≈1.4°	≈1.27°	≈0.7°	
POES GSFC NASA		14.0	7.0	
ITT Aerospace	1.22°			
Various books	1.25°			


THE MOON WAS OBSERVED WITH HIRS/2, /3, AND /4

- The flux density received from the Moon depends on the FOV².
- If one FOV is known, the Moon gives the diameter of all others.
- Web sites, journal articles and books give different values.
- OSCAR is (almost) right.

	HIRS/2	HIRS/3	HIRS/4
AAPP Sci. Description	1.25°	1.25°	0.72°
NOAA KLM User's Guide		1.4° (S₩) 1.3° (L₩)	0.7 °
ESA metop Performance	1.25°	1.25°	1.4° (S₩) 1.3° (L₩)
OSCAR (WMO)	≈ 1.4°	≈1.27°	≈0.7°
POES GSFC NASA		14.0	7.0
ITT Aerospace	1.22°		
Various books	1.25°		

DISK-INTEGRATED OBSERVATIONS WITH HIRS AND A MOON MODEL

- 20 observations of the Moon with HIRS were identified
- Phase angles between -70° and +70°
- Model for all channels
- Check for non-linearity: Radiance from Moon can be 40x radiance from Earth scene in channel 15 => Derive upper limit on non-linearity: 0.1%

SUMMARY AND CONCLUSIONS

Moon With Infrared Sounders

Moon With Microwave Sounders

- Signal of Moon gives ratio of beam sizes between instruments.
 - Contradictions between documents straightened out
 - FoV is 1.4° 1.3° 0.7° for HIRS/2 HIRS/3 -HIRS/4
- Beam size + signal of Moon gives its brightness temperature
 - Agreement of different satellites < 3K T_B (LW)
- Moon is great for checking FOV ratios / interchannel consistency / non-linearity (SW)

10/31/19

Duration of the presence of the Moon gives exact beam size

- Beam size underestimated in ground tests of MHS on NOAA18/19
- Most channels of MHS on NOAA-18, -19 not compliant with specs
- Maximum signal of Moon gives its brightness temperature
 - > Agreement of different instruments and satellites

 Moon is great for checking beam size / inter-channel consistency / photometric stability