

FY-3D HIRAS Radiometric Calibration and Accuracy Assessment

Chunqiang Wu, Chengli Qi, Xiuqing Hu, Hanlie Xu, Lu Li, Fang Zhou National Satellite Meteorological Center(NSMC), CMA Mingjian Gu, Chunyuan Shao, Xiaojie Sun, Jianwen Hua Shanghai Institude of Technical Physics(SITP), CAS

ITSC 22 Meeting, Saint-Sauveur, Canada 2019

- 1. HIRAS Introduction
- 2. Calibration method
- 3. Validation
- 4. Future work and Summary

- 1. HIRAS Introduction
- 2. Calibration method
- 3. Validation
- 4. Future work and Summary

- HIRAS: High spectral InfraRed Atmospheric Sounder
- Designed and manufactured completely by Shanghai Institute of Technical Physics (SITP), Chinese Academy of Sciences (CAS).
- FY-3D Satellite launched on 15 Nov, 2017.
- 3 month outgassing; HIRAS powered on 1st Mar, 2018.

Instrument structure

HIRAS

A New member of High Spectral IR Sounders, along with AIRS, IASI, and CrIS 4

 HIRAS is a Fourier transform interferometer which posses of high spectral resolution, low radiometric noise and high spectral and radiometric accuracy.

Parameters	Specification
Scan Period	10s
View Angle	1.1°
Pixels per scan line	116 (4 FOVs x 29 FORs)
Maximum scan angle	± 50.4°
Radiometric calibration accuracy	< 0.7K
Spectral calibration accuracy	< 7ppm
Direction pointing bias	<±0.25°

HIRAS instrument requirements

HIRAS Introduction: Specifications

- 40 steps each scan line, including 29 Earth Scene (ES), 2 Deep Space (DS) & 2 Internal Calibration Target (ICT)
- ✓ HIRAS scan, field-of-regard (FOR), field-of-view (FOV)
- ✓ 2×2 Four detectors define 1 FOR
- Nadir spatial resolution is 16km

Band	Spectral Range (cm ⁻¹)	Spectral Resolution (cm ⁻¹)	Sensitivity (NE∆T@280K)	No of Channels
LW	650*~1136 (15.38μm~8.8 μm)	0.625	0.15 ~ 0.4K	778
MW	1210~1750 (8.26μm~5.71 μm)	1.25	0.1∼0.7K	433
SW	2155 ~ 2550 (4.64μm ~ 3.92 μm)	2.5	0.3∼1.2K	159

7

- DR : Designed Resolution, international direct received data processing
- FR : Full Resolution , operational version

	Spectral Range (cm ⁻¹)	Spectral Resolution (cm ⁻¹)		MPD(cm)		Ch No	
Band		FR	DR	FR	DR	FR	DR
LW	650~1135	0.625	0.625	0.8	0.8	781	781
MW	1210~1750	0.625	1.25	0.8	0.4	869	433
SW	2155~2550	0.625	2.5	0.8	0.2	637	159

8

- 1. HIRAS Introduction
- 2. Calibration method
- 3. Validation
- 4. Future work and Summary

- Complex calibration method proposed by Revercomb et al. 1989 is used
- The processing sequence of HIRAS is as follow:

COMMON Sequence with difference:

- ◆ No hardware equipped to guarantee IGM for 3 targets are well match
- No DC output, and large uncertainties in Gains
- No reference FOV to separate Laser uncertainty to SA
- Large polarization effect in some band..

Two methods are proposed: a) relationship between phase and ZPD b) the phase of calibrated spectrum

Wavenumber/cm 1

Wavenumber/cm⁻1

¹²⁰⁰

Method: Nonlinearity Correction

-10

-20

200

250

11

ECT Temperature [K]

300

350

- Two NL correction methods are used:
- 1, NL Correction performed on Spectrum, following the method used by CrIS.
- 2, NL Correction performed on Interferagram, high order correction term can be considered.

Method: Nonlinearity Correction BRDESRAL

Follow CrIS ATBD2013

$$IGM_{ideal} + V_{ideal} = (IGM_{measure} + V) + a_2 * (IGM_{measure} + V)^2 + \dots$$

$$IGM_{ideal} = (1 + 2a_2V)IGM_{measure} + a_2 * IGM_{measure}^2 + V^2 + V_{ideal} + \dots$$

$$SPC_{ideal} = (1 + 2a_2V)SPC_{measure} + a_2 * SPC_{measure} @ SPC_{measure}$$

$$(1 + 2a_2V)SPC_{measure} + a_2 * SPC_{measure} @ SPC_{measure} = 0$$

$$a_2 = a_2'/(1 - 2Va_2'), a_2' = -SPC_{measure} / SPC_{measure} @ SPC_{measure}$$

$$WIR Band$$

$$SWIR Band$$

 $IGM_{ideal} + V_{ideal} = (IGM_{measure} + V) + a_2 * (IGM_{measure} + V)^2 + \dots$

 $SPC_{ideal} = (1 + 2a_2V)SPC_m$

WWW.cma.gov.ch Method: Nonlinearity Correction

Method deriving a2 from On-Orbit ICT

with Variable Temperature

wavenumber $[cm^{-1}]$

a2 fitting to minimize the responsivity Diff

WINNERAL Method: Polarization Correction BRIDE

The radiance spectra when the FOVs view DSP at different SSM scan angles, calibrated without the polarization corrections. Different colors represent radiance spectra at different SSM scan angles.

$$E_{p} = L_{\delta,ES} - L_{ES} = p_{r}p_{t} \frac{(L_{ES} - B_{SSM})[\cos(2(\delta_{ES} - \alpha)) - \cos(2(\delta_{DS} - \alpha))]}{1 + p_{r}p_{t}\cos(2(\delta_{DS} - \alpha))}$$
15

Www.cma.gov.cn Method: Polarization Correction BRI

ιv

- 1. HIRAS Introduction
- 2. Calibration method
- 3. Validation
- 4. Future work and Summary

Validation: Method for SNO Paring

SNO Pairing Method

Time Constrains:

10 minutes

- Air Path Constrains FOR 14-17 for CrIS FOR 14-16 for HIRAS.
- Distance constrains
 5 km (Great circle)
- Scene uniformity
 VIIRS & MERSI: std < 0.2K

Samples are uniform in scene temperature

WWW.cma.gov.cn Validation: Radiometric based on SNO SMC Validation: Radiometric based on SNO

20

Model: RTTOV 102018.04.26-04.29Input: ERA-InterimClear FOVS over Low Latitude Ocean

HIRAS/FY3D

CrIS/NPP

- 1. HIRAS Introduction
- 2. Calibration method
- 3. Validation
- 4. Future work and Summary

Band	Spectral Range (cm ⁻¹)	Spectral Resolution (cm ⁻¹)	Sensitivity (NE∆T@280K)			Num of
			FY-3D	FY-3	E	Channels
				$650 \sim 667 \text{ cm}^{-1}$	0.8K	
LWIR $\begin{pmatrix} 650 \sim 1136 \\ (15.38 \mu m \sim 8.8 \mu m) \end{pmatrix}$	0.625	0.15(Expectation) 0.4K(Requirement)	$667 \sim 689 \text{ cm}^{-1}$	0.4K	778	
			689~1000 cm ⁻¹	0.2K		
				$1000 \sim 1136 \text{ cm}^{-1}$	0.4K	
MWIR1	1210~1750	1.25	0.1(Expectation)	$1210 \sim 1538 \text{ cm}^{-1}$	0.2K	133
	(8.26µm~5.71 µm)		0.7K(Requirement)	$1538 \sim 1750 \text{ cm}^{-1}$	0.3K	433
MWIR2	2155~2550 (4.64μm~3.92 μm)	2.5	0.3(Expectation) 1.2K(Requirement)	2155~2300 cm ⁻¹	0.3	1 = 0
				$2300 \sim 2550 \text{ cm}^{-1}$	0.5	159

Till Sep 2019:

- Engineering protype
- TVAC Experiment, preliminary results will be shown later

From Jan 2019:

- Produce the flight module for the space-segment
- TVAC Experiment

FY-3E HIRAS Spectral Range Extra Range

DIR1

DIRO

In the extended Spectral Region, In investigation

OBS/LBL Transmittance

- The nonlinearity correction coefficients are derived by minimizing the spread of the responsivity functions derived from the measurements of the internal calibration target with varying temperatures.
- The polarization correction coefficients are derived from the cold space observations and the routine Earth scene measurements
- Compared to CrIS, the radiometric differences are about 0.3 K and 0.7 K for the LW and MW bands, respectively, and 0.5 K for the CO absorption and window regions in the SW band.
- The consistency of the radiometric calibration among the four FOVs is estimated to be within 0.2 K for most of the spectral domain. The consistency is different within scene temperatures.

Thank you for your attendance!!