

A BUFR and GRIB Tailoring System for NPP/JPSS and GCOM Products

Yi Song¹, Thomas King¹, and Walter Wolf²

¹IMSG at NOAA Center for Satellite Applications and Research, College Park, MD 20749 ²NOAA/NESDIS/STAR, College Park, MD 20749

Abstract

A tailoring software system that will convert the satellite products into Binary Universal Form for the Representation of meteorological data (BUFR) and GRIdded Binary Edition 2 (GRIB2) formatted files is under development at NOAA/NESDIS/STAR. This Reformatting development at NUAA/NESUIS/SIAK. This retormating Toolkit will convert the products of the NPOESS Preparatory Project (NPP) Joint Polar Satellite System (JPSS) and the Global Change Observation Mission 1st Water (GCOM-W1) Advanced Microwave Scanning Radiometer 2 (AMSR2) into BUFR and GRIB2 files. The every toelite davalopment exhedule consists of four current toolkit development schedule consists of four Current tookki development Schedule consists of tour phases, each adding new tallioning capabilities. In phase 1, the NPP Cross-track Infrared Sounder (CrlS) Radiances, Advanced Technology Microwave Sounder (ATMS) Radiances avisible/infrared Imager Radiometer Suite (VIRS) Radiances and IDPS VIRS Sea Surface Temperature (SST) will be converted into BUFR files. In phase 2 this coftware surface will adormat the NIPP VIPS phase 2, this software system will reformat the NPP VIIRS Aerosol Optical Thickness (AOT), Ozone Mapping and Aerosol Optical I hickness (AOI), Ozone Mapping and Profiler Suite (OMPS) Nadir Profile (NP) and OMPS Total Column (TC) data into BUFR files. In phase 3, the NPP VIIRS Polar Winds and ACSPO Sea Surface Temperature (SST) will be converted into BUFR files, and the Global and Regional Green Vegetation Fraction (OVF) will be converted into GRIB2 files. In phase 4, this software will convert the GCOM-W1 AMSR2 Microwave Brightness convert the GCUM-W1 AMSK2 Microwave Brightness Temperature, Total Precipitable Water (TPW), Cloud Liquid Water (CLW), Sea Surface Temperature (SST), Sea Surface Winds (SSW) into BUFF files and Soil Moisture (SM) into GRIB2 file, and convert NPP Ozone Limb Profile into BUFR file, Currently, the toolkit is running in the NPP Data Exploitation (NDE) system tailoring phase 1, 2 and 3 roducts, NDE is distribution these belicover products for the Data Exploitation (NDE) system tailoring phase 1, 2 and 3 products. NDE is distributing these tailored products to the NOAA Environmental Modeling Center (EMC) and the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) in near real-time. The phase 4 tailoring capabilities are currently in development with a scheduled delivery in 2014. The current goal is to extend the toolkit to tailor GOES-R

products. The details of this toolkit design and its products will be discussed.

Development History of BUFR and GRIB Reformatting Toolkit at NOAA/NESDIS

 July 08: IPT Branch Lead was informed to begin product developmen

 July 08: Worked with NDE to verify product requirements.

Aug 08: Started to design the operational BUFR and GRIB Tailoring toolkit.

Apr 09: Preliminary Design Review

Sep 09: Critical Design Review.

July 11: Subset of 399 CrIS channels was selected and included into BUFR file.

Oct 11: SST, AOT and OMPS Nadir Profile BUFR tables were approved as pre-operational.

Oct 11: Test Readiness Review for CrIS, ATMS and VIIRS SDR Products.

May 12: Delivered the BUFR/GRIB2 Toolkit phase 1 products (NPP CrIS, ATMS, VIIRS M-Band and I-Band radiances) to NDE operation system.

Feb 13: Delivered the BUFR/GRIB2 Toolkit phase 2
products (VIIRS AOT, IDPS SST, OMPS NP and TC) to
NDE for operation.

Sep 13: Delivered the BUFR/GRIB2 Toolkit phase 3 products (VIIRS Polar WINFS, Global and Regional GVF, ACSPO SST) to NDE operational system.

Nov 13: Delivered the GRIB2 formatting program for Interactive Multisensor Snow and Ice Mapping System (IMS) Snow and Ice products.

Jan 14: Delivered the GCOM-W1 AMSR2 Microwave tness Temperature BUFR converting program to Brightness Temperature B OSPO operational system

Mar 14: Distributed sample BUFR files for new GOES
Atmospheric Motion Vectors (AMV) algorithm products.

Mar 14: Started to draft the JMA AHI radiance BUFR table.

Future Development for the **BUFR/GRIB2** Reformatting **Toolkit at NOAA/NESDIS**

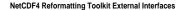
Dec 14: Deliver the operational reformatting toolkit for OMPS Ozone Limb Profile BUFR product, and GCOM-W1 AMSR2 BUFR/GRIB2 products.

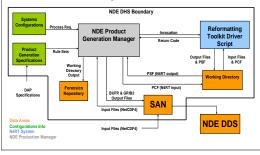
 The future functions to convert GOES-R products into BUFR/GRIB2 formatted files are being discussed and planned.

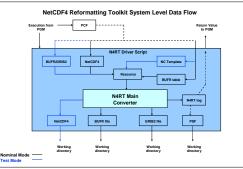
System Information

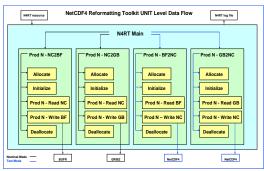
 BUFR and GRIB Tailoring System development is conducted on the NESDIS/STAR Linux machine. It is Intel(R) Xeon(R) CPU X5460 with Red Hat Enterprise Linux 5.9. GNU compiler (gfortran and gcc) and Intel compiler (ifort, icc/) are on it.

The BUFR and GRIB Tailoring System testing and integration are conducted on the NDE SADIE integration platform. It is IBM P561 (AIX 5.3) with 50 TB disk space, 16 CPUs, 2 GB/CPU. IBM XL 7.0 C/C++ and IBM XL 11.1 Fortran 77/90 are on it


All data handling and algorithms are written in C++ and Fortran 90.


NCEP BUFRLIB 10.2.3, NCEP GRIB2 library 1.4.0, NetCDf4.1.3 and HDF5 1.8.9, the latest versions, are used in this system


System Design


External interfaces:

- NDE is the location for all NOAA-unique data production within OSPO. • NDE DHS will schedule, manage, and monitor all NUCAPS processing operationally.
- NDE handles all product distribution and access for input CrIS, ATMS, VIIRS radiance, SST, AOT, Polar Winds and Nadir Profile Ozone BUFR data.
- The NetCDF4 Reformatting Toolkit code will run as a stand-alone unit within the NDE DHS.
- Composed of 4 Components:
- NC2BF: Converts NetCDF4 file (input) to BUFR file (output)
- NC2GB: Converts NetCDF4 file (input) to GRIB2 file (output).
- BF2NC: Converts BUFR file (input) to NetCDF4 file (output).
- GB2NC: Converts GRIB2 file (input) to NetCDF4 file (output).

VIIRS Radiance BUFR Table Entries		
Satellite ID	Second	Satellite Azimuth
ID of Originating Center	Orbit number	Solar Zenith
ID of originating sub- center	Scan line number	Solar Azimuth
Satellite Instrument	Field of view number	Cloud Mask
Satellite classification	Type of Band	Surface Type
Year	Geolocation Quality	Channel Number
Month	Latitude	Channel Wavelength
Day	Longitude	Radiance Quality
Hour	Satellite Height	Channel Radiance
Minute	Satellite Zenith Angle	Channel Reflectance

Main Entries in VIIRS Polar Winds BUFR Table

Satellite ID	Satellite derived wind computation method	Wind speed
Latitude	Pressure	Expected wind error
Longitude	Temperature	Wind quality flags
Channel wavelength	Surface type	Forecast wind direction
Satellite Zenith Angle	Wind direction	Forecast wind speed

CrIS Rad	liance BUFR	Table	Entries
Satellite ID	Satellite Azimuth		Radiance Type Flags
ID of Originating Center	Solar Zenith		Scan-Level Quality Flags
Satellite Instrument	Solar Azimuth		Type of Band
Satellite Classification	Ascending/Desce flag	ending	Starting Wavenumber (per band)
Year	Scan Line Numbe	er	Ending Wavenumber (per band)
Month	Field of Regard		Start Channel (per band)
Day	Field of View		End Channel (per band)
Hour	Orbit Number		Calibration Quality Flags
Minute	Height of Land St	urface	Field of View Quality Flags
Second	Satellite Height		Geolocation Quality
Location of Platform	Land Fraction		NUCAPS Quality
Latitude	Land/Sea Qualifie	er	Channel Number
Longitude	Cloud Cover		Channel Radiance
Satellite Zenith Angle	Height of Cloud T	ор	
ATMS Radiance BUFR Table Entries			
Satellite ID	Scan line number		e antenna corrections n number
ID of Originating Center	FOV Number	Channe	el Number
ID of Originating Sub- Center	Granule level quality flags	Channe	el Central Frequencies
Satellite Instrument	Scan-Level Quality Flags	Channe	el Bandwidth
Satellite Classification	Geolocation Quality	Antenna polarization	
Year	Latitude	Antenn	a Temperature
Month	Longitude	Brightness Temperature	
Day	Satellite Height	Noise-equivalent delta temperature while viewing cold target	
Hour	Satellite Zenith Angle	temper warm t	
Minute	Satellite Azimuth	Channe	el-Level Quality Flags
Second	Solar Zenith		
occona			

OMPS Total Column BUFR Table Entries

Satellite ID	Latitude	Aerosol contamination index
ID of Originating Center	Longitude	Sulfur dioxide index
Satellite Instrument	Satellite Zenith Angle	Snow cover
Year	Satellite Azimuth	Quality of pixel level retrieval
Month	Solar Zenith	Ozone total column quality flag
Day	Solar Azimuth	Column amount O3
Hour	Satellite Height	Ozone below cloud
Minute	Geolocation Quality	Lat/lon at each corner
	Cloud fraction	

Satellite ID	Latitude	Retrieval Quality
ID of Originating Center	Longitude	Surface Type
Satellite Instrument	Satellite Zenith Angle	Aerosol Type (land)
Year	Satellite Azimuth	AOT Quality Flag
Month	Solar Zenith	Aerosol Angstrom Wavelength Exponent
Day	Solar Azimuth	Channel Wavelength
Hour	Satellite Height	Optical Depth
Minute	Geolocation Quality	
Second	VIIRS Geolocation Quality	

Variables in Global/Regional GVF GRIB2 file

Latitudes of first/last grid point	Latitude direction increment
Longitude of first/last grid point	Longitude direction increment
Number of points along a parallel	Number of points along a meridian
Map projection	4km/1km GVF values

Product Quality Assurance

- All code development platforms are nearly identical to the production target platforms
- Only the official releases of the NCEP BUFRLIB, GRIB2, HDF5 and NetCDF4 libraries will be used in the software..
- The generated BUFR and GRIB2 files will be directed back into the Reformatting Toolkit to generate new NetCDF4 files, and compare to the source input files before distributing.
- All the BUFR files will maintain consistency with the heritage products. The contents of the original HDF5/NetCDF4 will be kept as exact as possible; the negative radiances will be stored in BUFR files.
- The BUFR and GRIB2 products, tables, and additional resources will be released early to allow for WMO approval and customer validation of products.