

GEISA/IASI-03 DATA QUALITY EVALUATION: Trough comparisons with other public database archives

N. Jacquinet-Husson, N.A. Scott, A. Chédin, R. Armante

Laboratoire de Météorologie Dynamique Atmospheric Radiation Analysis Group Ecole Polytechnique 91128, Palaiseau, France

http://ara.lmd.polytechnique.fr

OUTLINE

DATABASES OVERVIEW

- II) DATABASE FORMATS
- III) UPDATING SPECTROSCOPIC PARAMETERS: examples of issues
 - 1) Updating of H₂O in GEISA (GEISA/IASI-03)
 - 2) Differences between GEISA (GEISA/IASI-03) and HITRAN-04
 - 3) Differences between GEISA(GEISA/IASI-03) and MIPAS-03
- IV) EVALUATION OF THE IMPACT OF SPECTROSCOPIC ARCHIVE DIFFERENCES ON RADIATIVE TRANSFER SIMULATIONS
- V) CONCLUDING COMMENTS

Ens

I)

MIPAS Dedicated Spectroscopic Database
 Flaud et al. Atm. And Ocean Optics, 16 (2003) 172-182.

Evaluation of the differences in contents and subsequent radiative transfer modelling impacts

The GEISA-2003 system

Gestion et Etude des Informations Spectroscopiques Atmosphériques Management and Study of Atmospheric Spectroscopic Information

Three SUB-DATABASES

Line transition parameters database 42 molecules (96 isotopic species) 1,668,371 entries between 0 and 35,877 cm⁻¹

Absorption cross-sections database

- IR: 32 molecular species (mainly CFC's)
- UV/Visible : 11 molecular species

Aerosol data archive and softwares

Ens

ASSOCIATED MANAGEMENT SOFTWARES (For each sub-database)

GEISA/IASI-03 database general context

GEISA/IASI-03 database: <u>extraction</u> (spectral range 599-3001 cm⁻¹) and <u>partial update</u> of GEISA-03 Spectroscopic database

- Maintained and developed with the purpose of assessing the IASI measurements capabilities, within the ISSWG, in the frame of the CNES/EUMETSAT European Polar System (EPS) preparation, by simulating high resolution radiances and/or using experimental data.
- IASI mainly designed for operational meteorological soundings with a very high level of accuracy. Measurement technique based on passive IR remote sensing using an accurately calibrated Fourier Transform Spectrometer operating in the 3.7- 5.5 µm spectral range

Continuous update Associated interest for AIRS

 IASI : Infrared Atmospheric Sounding Interferometer
 AIRS : Advanced InfraRed Sounder
 ISSWG : IASI Sounding Science Working Group
 CNES : Centre National d'Etude Spatiales, France
 EUMETSAT : EUropean organization for the exploitation of METeorological SATellites

Cms

The GEISA/IASI-2003 system

Gestion et Etude des Informations Spectroscopiques Atmosphériques Infrared Atmospheric Sounding Interferometer

Three SUB-DATABASES

Individual spectral lines spectroscopic parameters database 14 molecules (53 isotopic species): H₂O, CO₂, O₃, N₂O, CO, CH₄, O₂, NO, SO₂, NO₂, HNO₃, OCS, C₂H₂, N₂

Absorption cross-sections database (mainly CFC's) 6 molecular species: CFC-11, CFC-12, CFC-14, CCI4, N2O5, HCFC-22

Microphysical and optical properties of Basic Atmospheric aerosol components database

ASSOCIATED MANAGEMENT SOFTWARES (For each database)

Ens

CMS

POLYTECHNIQUE

ELSEVIER

Journal of Quantitative Spectroscopy & Radiative Transfer 95 (2005) 429-467 Journal of Quantitative Spectroscopy & Radiative Transfer

www.elsevier.com/locate/jqsrt

The 2003 edition of the GEISA/IASI spectroscopic database

N. Jacquinet-Husson^{a,*}, N.A. Scott^a, A. Chédin^a, K. Garceran^a, R. Armante^a,
A.A. Chursin^b, A. Barbe^c, M. Birk^d, L.R. Brown^e, C. Camy-Peyret^f, C. Claveau^f,
C. Clerbaux^{g,h}, P.F. Coheur^h, V. Dana^f, L. Daumont^c, M.R. Debacker-Barilly^c,
J.M. Flaudⁱ, A. Goldman^j, A. Hamdouni^c, M. Hess^d, D. Jacquemart^f, P. Köpke^k,
J.Y. Mandin^f, S. Massie¹, S. Mikhailenko^b, V. Nemtchinov^m, A. Nikitin^b,
D. Newnham^{n,1}, A. Perrinⁱ, V.I. Perevalov^b, L. Régalia-Jarlot^c, A. Rublev^o,
F. Schreier^d, I. Schult^p, K.M. Smithⁿ, S.A. Tashkun^b, J.L. Teffo^f, R.A. Toth^e,
VI.G. Tyuterev^c, J. Vander Auwera^h, P. Varanasi^m, G. Wagner^d

^aLaboratoire de Météorologie Dynamique/ Institut Pierre Simon Laplace, Ecole Polytechnique, Route Departmentale 36, 91128 Palaiseau, France
 ^bLaboratory of Theoretical Spectroscopy, Institute of Atmospheric Optics, Russian Academy of Sciences, 634055 Tomsk, Russian Federation
 ^cGroupe de Spectrométrie Moléculaire et Atmosphérique, Université de Reims-Champagne-Ardenne, 51062 Reims, France
 ^dRemote Sensing Technology Institute, German Aerospace Center (DLR), Oberpfaffenhofen, D-82234 Wessling, Germany
 ^eJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
 ^fLaboratoire de Physique Moléculaire et Applications, Université Pierre et Marie Curie, 75252 Paris, France

⁸Service d'Aéronomie/Institut Pierre Simon Laplace, Université Pierre et Marie Curie, 75252 Paris, France

 ^hService de Chimie Quantique et Photophysique, Université Libre de Bruxelles, C.P. 160/09, B-1050 Brussels, Belgium ⁱLaboratoire Interuniversitaire des Systèmes Atmosphériques, Université Paris 12, 94010 Créteil, France ⁱDepartment of Physics, University of Denver, Denver, CO 80208, USA ^kMeteorologisches Institut der Universität München, München, D-80333, Germany ¹National Center for Atmospheric Research, Boulder, CO 80307, USA ^mState University of New York at Stony Brook, Stony Brook, NY 11794, USA ⁿRutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 OQX, UK
 ^oInstitute of Molecular Physics at Russian Research Center Kurchatov Institute, Moscow 123183, Russian Federation ^pMax-Planck-Institut für Meteorologie, D-20146 Hambura, Germany

Received 23 July 2004; accepted 15 December 2004

42 co-authors

16 Laboratories

ierre

Laplace

MIPAS Dedicated Spectroscopic Database

- MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) experiment operating on board the ENVISAT satellite since March 2002
 - Recording emission limb sounding spectra at 0.025 cm⁻¹ (unapodized) in the spectral range 685-2410 cm⁻¹
 - Starting from HITRAN-96 and GEISA-97, and updated in 2001 and 2003 with specific spectroscopic studies or from spectroscopic studies prior to their publications
 - 32 molecules retained from the HITRAN list (O, NO+, HOBr, C₂H₄, CH₃OH, H₂CO, CH₃OH discarded)
 - Molecular line parameters updated for: H₂O, CO₂, O₃,N₂O, CH₄,NO₂,HNO₃,HOCI,COF₂

Cms

Validation through ATMOS and MIPAS recorded spectra

Ens

UNIVERSITE DIERRE & MARIECURIE

GEISA andGEISA/IASI-03 Line Transitions Records

A-J fields

Ens

POLYTECHNIQUE

Mainly specific of GEISA management

software

- (A) Wavenumber (cm⁻¹) of the line associated with the vibro-rotational transition.
- **(B)** Intensity of the line (cm molecule⁻¹ at 296K).
- (C) Lorentzian collision halfwidth (cm⁻¹ atm⁻¹ at 296K).
- **(D)** Energy of the lower transition level (cm⁻¹).
- (E) Transition quantum identifications for the lower and upper levels of the transition
- (F) Temperature dependence coefficient *n* of the halfwidth
- (G) Identification code for isotope.

(O)

(P)

(Q)

aplace

- (I) Identification code for molecule.
- (J) Internal GEISA code for data identification.

K-Q fields in the GEISA format Mainly HITRAN-01 format inter-compatibility related

- (K) Molecule number as in HITRAN
- (L) Isotope number as in HITRAN
- (M) Transition probability (in debye²)
- (N) Self broadening pressure halfwidth (HWHM) (cm⁻¹atm⁻¹) at 296K (for water)
 - Air pressure shift of the line transition (cm⁻¹atm⁻¹) at 296K
 - Accuracy indices for wavenumber, intensity and halfwidth
 - Indices for lookup of references for wavenumber, intensity and halfwidth

GEISA-03 Line Transitions Records (following)

UNIVERSITE DIERRE & MARIECURIE

Ens

POLYTECHNIQUE

R-U' fields in the GEISA/IASI format Mainly IASI specific

- (R) Temperature dependence coefficient n of the air pressure shift
- (A') Estimated accuracy (cm-1) on the line position
- (B') Estimated accuracy on the intensity of the line in (cm⁻¹/(molecule.cm⁻²)
- (C') Estimated accuracy on the air collision halfwidth (HWHM) (cm⁻¹atm⁻¹)
- (F') Estimated accuracy on the temperature dependence coefficient n of the air broadening HW
- (O') Estimated accuracy on the air pressure shift of the line transition (cm⁻¹atm⁻¹) @296K
- (R') Estimated accuracy on the temperature dependence coefficient n of the air pressure shift
- (N') Estimated accuracy on the self broadened (HWHM) (cm⁻¹atm⁻¹) @296K
- (S) Temperature dependence coefficient n of the self broadening halfwidth
- (S') Estimated accuracy on the temperature dependence coefficient n of the self broadening
- (T) Self pressure shift of the line transition (cm⁻¹atm⁻¹) @296K
- (T') Estimated accuracy on the self pressure shift of the line transition (cm⁻¹atm⁻¹) @296K
- (U) Temperature dependence coefficient n of the self pressure shift
- (U') Estimated accuracy on the temperature dependence coefficient n of the self pressure sl

Institut

Laplace

209 Characters record

Ens

POLYTECHNIQUE

UNIVERSITE

Ens

POLYTECHNIQUE

1) Updating of H₂O in GEISA and GEISA/IASI-03

H2O GEISA/IASI-0₃ updating and alternative archive

UNIVERSITE DIEARE & MARIECURIE

Ens

POLYTECHNIQUE

Toth's (2000, 2002) 599.681 - 2819.848 cm⁻¹

RAL/ EUMETSAT

700.032 - 1299.980 cm⁻¹

Ens

POLYTECHNIQUE

2) DIFFERENCES BETWEEN GEISA (GEISA/IASI-03) and HITRAN-04

H₂O Intensity Differences

GEISA/IASI 03 (Toth's data) and HITRAN 04 comparisons for air-broadened half-widths (HW) and intensities (I)

Ens

POLYTECHNIQUE

aplace

Difference (%)

Ens

POLYTECHNIQUE

3) DIFFERENCES BETWEEN GEISA (GEISA/IASI-03) and MIPAS-03

H₂O Collision Half-Width Differences

Ens

POLYTECHNIQUE

15th International TOVS

CO₂ Collision Half-Width Differences

GeisaMipas (HWgMip-HWg03)/HWg03max +

Ens

D1

Evaluation of the Impact of Spectroscopic Archive Differences on Radiative Transfer Simulations

Ens

POLYTECHNIQUE

Spectroscopic data involved in comparisons

GEISA/IASI-03 599 - 3,001 cm⁻¹

14 molecules: H_2O , CO_2 , O_3 , N_2O , CO, CH_4 , O_2 , NO, SO_2 , NO_2 , HNO_3 , OCS, C_2H_2 , N_2

MIPAS database 597 – 2,503 cm⁻¹

Version pf3.1

HITRAN-04 extractions in GEISA/IASI and MIPAS databases common spectral intervals

6 Molecular species selected for comparisons, i.e.: H_2O , CO_2 , O_3 , N_2O , CO, CH_4

Ems

ASI Radiative Transfer Modelling Overall Approach

• Five atmospheric profiles; mean of each of 5 air mass class the Thermodynamic Initial Guess Retrieval (TIGR) data set, in its latest version, a climatological library of about 2300 representative atmospheric situations selected by statistical methods from 80,000 radiosonde reports [Chédin et al., 1985; Achard, 1991; Chevallier et al., 1998].

Mc Clatchey profiles

Three IASI spectral Bands: 645-1210 cm⁻¹; 1210-2000 cm⁻¹; 2000-2760 cm⁻¹

4A (Automatized Atmospheric Absorption Atlas); fast and accurate lineby-line radiative transfer model [N.A. Scott and A. Chédin, 1981; Tournier et al. 1995; Chéruy et al. 1995] or STRANSAC line-by-line and layer-by-layer model, in their latest 2000 version [N.A. Scott, 1974]

Mean thermodynamic Parameters for each TIGR air-mass

Ens

HITRAN and GEISA H₂O DIFFERENCE IMPACT

STRANSAC-2000 IASI Simulation

Difference

Tropical TIGR-2000 atmosphere

Ens

POLYTECHNIQUE

UNIV

B

15th International TOVS Study Conference, 03-18^aOettober (2006, Maratea (Italy)

IASI 4A-2000 Band-1 Simulation TIGR-2000 Mean latitude 2

Ens

POLYTECHNIQUE

E ELC

IASI 4A-2000 Band-3 Simulation TIGR-2000 Tropical

CONCLUDING COMMENTS

Ens

UNIVERSITE DIERRE & MARIE CURIE

STATUS OF MOLECULES FOR IASI RADIATIVE TRANSFER MODELLING

From ISSWG-14 (March 24-26 2001) Conclusions WHERE ARE WE NOW ?

EBSITE E & MARIECURIE						
MOLECULE	LINE POSITION	LINE INTENSITIES	LINE BROADENING	LINE MIXING	CONTINUUM	CROSS- SECTIONS
H2O	1	1	1		1	
CO2	Y	Y	2	Y		
03	3	1	1			
CH4	2	2	1	1		
СО	Y	Y	Y			
N2O	?	?	2	2		
HNO3	3	2	3			
O2 & N2 collision induced spectrum					Y	
CFC's, HCFC's, N2O5						Y

Ems

POLYTECHNIQUE

<u>1</u>: Parameters that need to be improved; <u>2</u> rd priority; <u>3</u> rd priority <u>Y</u> no problem clearly identified; ? The databases have to be checked

Remaining spectroscopy related

proplems

Some conclusions of validation exercises, using e.g. : the 4A-00/LMD Model, in the case of IASI radiative transfer modelling

- 1. The water vapour spectroscopic parameters: still need to be validated;
- 2. The water vapour continuum: more tuning to be done when more validation data (especially with high water vapor content) become available;
- 3. The freons bands at 850 and 920 cm⁻¹: refine the temperature dependence;
- 4. O₃ in the 9.6 micron region: the spectroscopic parameters still need to be validated;
- 5. Some CO2 Q branches: further improvement/tuning of the line mixing

Ens

POLYTECHNICH

Spectroscopy issues and IASI sounding Channels Selection (H₂O exemple)

IASI Stransac-2000 simulations with RAL or TOTH spectroscopy

Ens

POLYTECHNIQUE

GEISA/IASI Present Operational Use

Ens

IASI INSTRUMENT STATUS

IASI Level 1 Cal/Val activities

- GEISA/IASI used as the reference spectroscopic database
- It is expected that validation can be achieved using a Line by line RTM (4A will be used for validation at 3 wavenumbers in each 3 bands)

Ens

POLYTECHNICH

idences de nvisonnement Simon Laplace