Satellite Infrared Radiance Validation Studies using a Multi-Sensor/Model Data Fusion Approach

A. Larar^a, W. Smith^b, D. Zhou^a, X. Liu^a, and S. Mango^c

^aNASA Langley Research Center, Hampton, VA ^bHampton University, Hampton, VA ^cNPOESS Integrated Program Office, Silver Spring, MD

> ITSC-14, Beijing, China May 25-31, 2005

> > **BAE 146-300**

Proteus

- Motivation
- Validation methodology
- Calibration validation examples using spacecraft- and aircraft-based sensors
 - Instrument systems & datasets
 - Spatial registration
 - Spectral fidelity
 - Radiometric accuracy
- Summary & Conclusions

Topics

Motivation for satellite sensor cal/val and benefit from using airborne sensors

- Post-launch validation activities are critical to verify quality of satellite measurement system (i.e., sensor, algorithms, and direct/derived data products)
- Resulting data contribute toward essential cal/val activities
 - On-orbit sensor performance verification
 - On-orbit sensor calibration validation
 - Validate algorithms
 - Direct and derived data product validation
 - Long-term monitoring of sensor performance (radiance & geophysical)

• Aircraft underflights fundamental to space-based sensor validation

High-altitude aircraft platforms (Proteus, ER-2, DC-8, WB-57, P-3, BAE-146-300, etc.) instrumented with validation sensors (NAST-I, S-HIS, ARIES, INTESA, NAST-M, LASE, MAS, etc.) provide validation data by obtaining spatially & temporally coincident observations with satellite platforms of interest (e.g. Terra (Modis), Aqua (Modis & AIRS), Aura (TES), and future Metop (IASI), NPP/NPOESS (CrIS), and EQ-3 (GIFTS).

Calibration Validation Approach*

Spatial

- Landmark navigation
 - compare observations to databases for time invariant distinct features of known spatial characterization (e.g., coastlines)
- Comparison with coincident observations
 - compare measurements with other temporally-coincident same-scene view observations containing spatial feature variability (coastlines, thermal gradients, clouds, hot lava, fires, etc.)

• Spectral

- Comparison with simulations

• compare clear sky measured radiance to LBL radiative transfer model calculations for spectral regions where FM parameters are well-known (e.g. spectroscopy, temperature and CO_2 profiles for 15 μ band); vary simulated instrument spectral response to minimize residuals (e.g., effective metrology laser wavenumber for FTS or channel SRFs for grating)

Comparison with coincident observations

• compare measured radiance with other temporally-coincident same-scene view high-spectral resolution measurements (i.e., a/c- or s/c-based FTS)

Radiometric

- Comparison with other coincident observations and simulations

- compare measured radiances in window and opaque regions across spectral extent, for varying uniform clear sky over ocean and overcast scene temperatures, with other observations/calculations
 - High-spectral resolution measurements (aircraft, e.g. NAST-I & SHIS; s/c, e.g. AIRS, IASI, CrIS)
 - Broadband radiance measurements (e.g., GOES, SEVERI, MODIS, VIIRS)
 - Radiative transfer calculations (using, e.g., radiosondes, NWP analysis fields, e.g., ECMWF)

* Applied to each detector, i.e. FTS band, grating channel, etc.

Characteristics of Remote Sensors Employed in Study

Instrument system	<u>Sensor type</u>	<u>Spectral</u> <u>extent</u>	<u>Spectral</u> <u>resolution</u>	<u>Nadir</u> IFOV	<u>Platform</u>
NAST-I	Michelson interferometer	3.5 – 16 μ, continuous	0.25 cm⁻¹ , υ/δυ > 2000	2.5 km (from ER- 2)	ER-2 / Proteus
S-HIS	Michelson interferometer	3.0 – 17 μ, continuous	0.5 cm⁻¹ , υ/δυ > 1000	2.0 km (from ER- 2)	ER-2 / Proteus
AIRS	Grating spectrometer	3.8 – 15.4 μ, discrete channels	~ 0.4 – 2.2 cm ⁻¹ , υ/δυ ~ 1200	~ 13.5 km	AQUA
MODIS	Grating spectrometer	$\begin{array}{l} \textbf{3.6-14.4} \ \mu \\ \textbf{(IR bands 20} \\ \textbf{-36)} \ \textbf{, discrete} \\ \textbf{channels} \end{array}$	~13 – 128 cm ⁻¹ , broadband filters	~ 1 km	AQUA

Case Study: *PTOST*

• **PTOST (February 18 - March 13, 2003, HAFB, Hawaii).** The 2003 *Pacific THORPEX Observing System Test (PTOST)* was the first in a series of Pacific and Atlantic observation campaigns in support of the WWRP/USRP THORPEX Program. THORPEX - a Global Atmospheric Research Program aimed at improving short range (up to 3 days), medium range (3-7 days) and extended range (two week) weather predictions. Flights targeted frontal boundaries and storm systems, as well as satellite sensor validation underflights (TERRA, AQUA, and ICESat)

Aircraft Payload Included:

ER-2 (NAST-I, NAST-M, S-HIS, MAS, CPL); G-IV (Dropsondes, in-situ O₃)

Satellite Platforms Included: Terra, Aqua, GOES

Case Study: *EAQUATE*

Continued NPP/NPOESS risk mitigation with pre-Metop (IASI , AMSU, MHS, HIRS) collaborations focusing on Aqua satellite cal/val and chemistry product validation

- European AQUA Thermodynamic Experiment (EAQUATE)
 - Naples, Italy; 3 11 Sep; Proteus, Potenza/Naples ground sites, AQUA
 - Cranfield, UK; 11 19 Sep; Proteus, BAE 146-300, & AQUA

Measurements Included:

NG Proteus (NAST-I, NAST-M, S-HIS, FIRSC, MicroMAPS) UK BAE146-300 (ARIES, TAFTS, SWS, MARSS & Deimos; dropsondes; in-situ cloud phys. & trace species) Ground sites: Potenza/Naples (lidar, radiosondes, aeri, m-wave) Satellite: AQUA (AIRS & MODIS); MSG (Seviri)

- Comparison of Aqua AIRS and MODIS relative spatial registration
 - AIRS spatially-convolved with MODIS B31 (11 μ) SRF
 - MODIS B31 integrated spatially over AIRS IFOVs
 - RSS differences calculated for varying relative offsets in spatial co-registration
 - Portions of granules examined for 7 recent NAST campaign flight days

Sample Spatial Registration Results

AIRS vs MODIS Co-registration Comparison Summary^o

DATE*	$\Delta x^{\#}$	$\Delta y^{\#}$	
030303	1.70	-0.60	
031003	2.70	0.00	
031203	2.00	-0.90	* s
090704	0.90	-0.80	day rec fiel
090904	1.30	-1.50	
091404	1.70	-0.30	# m
091804	1.50	-0.10	
Average	1.69	-0.60	
Standard Deviation	0.57	0.52	

* Select flight days during recent NAST field campaigns

 preliminary results; not necessarily representative of all spectral bands or spatial positions.

[#] units of modis pixels

Example spectral impact of spatial misregistration for neighboring channels

Spectra for uniform & nonuniform scenes shown for two days

►NAST-I in black; AIRS in colors

≻Spectral extent of 3 AIRS detector modules also shown

<u>030303</u>

091404

Spectral Calibration Validation Example

- NAST-I laser cm⁻¹ stability study
 - Spectral calibration fidelity assessed by varying laser wavenumber in simulations to best match measured (calibrated) radiance spectra (i.e. minimizing RSS of obs-calc residual)
- Select days examined from most campaigns
 - CAMEX3 (13 Sep 98); Wallops99 (23 Aug 99); AFWEX (29 Nov, 4 Dec 00); CLAMS (10 Jul 01); IHOP (11 Jun 02); CF (26 Jul 02); PTOST (3, 10, & 12 Mar 03); ATOST (19 Nov, 3 & 8 Dec 03); INTEX (22 Jul 04); EAQUATE (9 &18 Sep 04)
- Simulation assumptions
 - υ_0 =15799.d0 cm⁻¹ (~.633 micron) used as baseline for sims
 - Atmospheric state from PTOST 030303

Satellite Infrared Radiance Validation Studies using a Multi-Sensor/Model Data Fusion Approach, Larar et al., ITSC-14, Beijing, China, 25-31 May, 2005.

Radiometric Calibration Validation **Examples**

- **Incorporate multiple, independent, temporally- & spatially-coincident** ٠ data from recent NAST field campaigns (PTOST & EAQUATE)
 - Satellite:
 - AQUA (AIRS & MODIS)
 - Aircraft:
 - ER-2/Proteus (NAST-I & S-HIS)
 - Ground:
 - Potenza (lidar & radiosondes)
- Verify spatial co-registration by comparing geo-referenced images at select λ
- LBL-based calculations for simulated observations ٠
 - Using best combination of "truth" data for sfc & atm state
- **Compare view-angle-coincident observations with broadband SRFs** ۲ applied (i.e. Modis)
- For clear, uniform regions, compare high resolution spectra (i.e. NAST-۲ I, S-HIS, & AIRS)

(11 micron LW Win) smooth

MB28_smooth (7.2 micron H20)

MB36_smooth (14.2 micron CO2)

airs_mb31 (11 micron LW Win)

airs_mb28 (7.2 micron H20)

Satellite Infrared Radiance Validation Studies using a Multi-Sensor/Model Data Fusion Approach, Larar et al., ITSC-14, Beijing, China, 25-31 May, 2005.

Delta BT (K) bins

LaRC

0.44: 1.04

BT (K)

-0.42; 0.28

250

BT (K)

1.19; 0.15

BT (K)

260

270

- AIRS_MB31); RM

AtSC

MODIS vs NAST-I, S-HIS, AIRS

250

£ 245

Ш

stdev = 0.05 K

EAQUATE 090704

Spectra Comparison: NAST-I, S-HIS, AIRS MB31 **AtSC** 296.0 294.0 292.0 290.0 240 288.0 BT (K) 286.0 284.0 1000 1500 2000 2500 282.0 280.0 278.0 260 240 276.0 220 **MB31 stddev** 14.3 - 4 μ 180 (AIRS IFOVs) 1000 1500 2000 2500 max = 0.22 KNAST-I S-HIS min = 0.05 KAIRS mean = 0.11 K

Satellite Infrared Radiance Validation Studies using a Multi-Sensor/Model Data Fusion Approach, Larar et al., ITSC-14, Beijing, China, 25-31 May, 2005.

MB31 stddev (AIRS IFOVs)

max = 0.16 Kmin = 0.10 Kmean = 0.14 K

stdev = 0.02 K

Spectra Comparison: NAST-I, S-HIS, AIRS

Spectra Comparison: NAST-I, S-HIS, AIRS

MB31 stddev (AIRS IFOVs)

max = 0.23 K

- min = 0.07 K
- mean = 0.16 K

stdev = 0.05 K

Spectra Comparison: NAST-I, S-HIS, AIRS

14.3 - 4 µ

Spectra Comparison: NAST-I, S-HIS

MODIS – AIRS (all overlapping IFOVs)

PTOST

Band	090704	090904	091404	091804	030303	031003	031203
MB21 (3.95 micron SW Win)	-0.13	-0.04	0.02	-0.20	0.15	0.21	0.44
MB24 (4.46 micron CO2)	-0.16	-0.17	0.34	0.59	0.30	0.46	0.19
MB27 (6.7 micron H2O)	-0.99	-0.92	-0.64	-0.80	-0.55	-0.63	-0.65
MB28 (7.2 micron H2O)	-0.42	-0.41	-0.38	-0.47	-0.32	-0.36	-0.33
MB29 (8.55 micron LW Win)	-0.47	-0.37	-0.20	-0.47	-0.16	-0.10	-0.21
MB30 (9.6 micron O3)	0.36	0.35	0.50	0.45	0.59	0.67	0.63
MB31 (11 micron LW Win)	0.44	0.55	0.16	0.37	-0.05	-0.03	0.02
MB32 (12 micron LW Win)	-0.04	-0.00	-0.14	-0.17	-0.07	-0.06	-0.00
MB33 (13.3 micron CO2)	-0.42	-0.45	-0.45	-0.39	-0.50	-0.43	-0.42
MB36 (14.2 micron CO2)	1.19	1.29	1.03	0.92	1.23	1.14	1.24
MODIS hand SPEs applied to AIPS							

>MODIS integrated over AIRS IFOVs

≻"bias" values (K) of linear fits to scatter plots shown

Satellite Infrared Radiance Validation Studies using a Multi-Sensor/Model Data Fusion Approach, Larar et al., ITSC-14, Beijing, China, 25-31 May, 2005.

EAQUATE

Select Sensor Offsets Observed during EAQUATE* Flight Days

* PTOST data shown in green

MB31 (11.0 μ)	MODIS - NASTI	MODIS – S-HIS	MODIS_sm - AIRS	NAST-I – S-HIS
090704	-0.43	-0.28	0.61	0.18
090904	-0.68	-0.43	0.64	0.14
091404	-0.56	-0.31	0.48	0.07
091804	N/A	N/A	0.61	0.11
030303	-0.35	-0.09	0.04	0.21
031003	-0.27	0.05	-0.04	0.29
031203	-0.33	0.05	0.02	0.23

MB28 (7.2 μ)	MODIS - NASTI	MODIS – S-HIS	MODIS_sm -AIRS	NAST-I – S-HIS
090704	-0.44	-0.83	-0.44	-0.17
090904	-0.35	-0.56	-0.41	-0.27
091404	-0.32	-0.57	-0.36	-0.18
091804	N/A	N/A	-0.36	-0.12
030303	-0.09	0.38	-0.25	0.36
031003	0.09	0.45	-0.38	0.30
031203	N/A	N/A	-0.35	0.29

➢MODIS band SRFs applied to HSR sensor data

➢ View-angle-coincident data along nast nadir track compared

➤MODIS integrated over AIRS IFOVs = MODIS_sm; others are single IFOVs

≻"bias" values (K) of linear fits to histogram-filtered scatter plots shown

MB32 (12 μ)	MODIS - NASTI	MODIS – S-HIS	MODIS_sm -AIRS	NAST-I – S-HIS
090704	-0.31	-0.20	0.02	0.14
090904	-0.55	-0.28	0.03	0.17
091404	-0.39	-0.23	-0.03	0.04
091804	N/A	N/A	-0.02	0.12
030303	-0.31	0.03	0.02	0.22
031003	-0.17	0.14	-0.07	0.26
031203	-0.21	0.08	0.01	0.20

PTOST 031003

Spectra Comparison: NAST-I, S-HIS, AIRS

mean = 0.10 K

stdev = 0.05 K

1300

1320

1340

1280

1260

Satellite Infrared Radiance Validation Studies using a Multi-Sensor/Model Data Fusion Approach, Larar et al., ITSC-14, Beijing, China, 25-31 May, 2005.

220

S-HIS

AIRS

Summary & Conclusions

- Post-launch validation activities are critical to verify quality of satellite measurement system (i.e., sensor, algorithms, and direct/derived data products)
- Absolute and relative spatial registration can be validated using ground truth and simultaneous observations, respectively
- Spectral fidelity easily verified via simulations, but corresponding radiometric accuracy verification from simulation is limited by vertical accuracy of ancillary data and absolute accuracy of spectroscopic parameters
- Aside from collocated sensor(s) on same platform, space-based sensor radiometric validation best achieved using high-altitude aircraft based sensors; can eliminate errors from spatial and temporal mismatches and spectroscopic data uncertainties, and allows viewing most of atmospheric column; enables extrapolation of calibration reference through underflight/characterization of other (e.g. broadband) systems
- High resolution FTS systems (e.g., NAST-I & S-HIS) provide continuous spectra of high radiometric and spectral fidelity enabling emulation of other high-resolution or broadband instrument systems
- Spatial and temporal coincidence between observing systems crucial to differentiate between measurement uncertainty and geophysical variability