The assimilation of AMSU-B radiances in the CMC global data assimilation system; their difficulties relative to AMSU-A radiances and their impact

C. Chouinard, J. Hallé

Meteorological Service of Canada

Medium- and long-range forecasts by the global version of the GEM (Global Environmental Multiscale) model

- uniform 0.9 degree lat-lon grid
- 28 h levels in vertical
- forecast to 144 h (12 UTC)
- forecast to 240 h (00 UTC),
- forecast to 360 h (Saturdays only)
- Operational since Oct. 14 1998



#### Comparison of the CMC 24h 500 hPa GZ to other NWP Centres Northern Hemisphere

VERIFICATION vs RADIOSONDES. GZ 500 hPa (24h) Hémisphère Nord/Northern Hemisphere Moyenne mobile de 12 mois / 12 Month Running Mean



# 3D-Var moisture analysis (Pre-AlMSU-B)

direct assimilation of surface T, T-Td and ps

- RAOB T, T-Td, and winds at 27 levels
- added 3 ATOVS/AMSU-A (channels 3-5)
  - assimilated HUMSAT derived profiles of T-Td

Preparation of 3D-Var; raising the humidity analysis top Sensitivity to Inq New Operational 100 200.00 200 300 ಹ 400 (ЪР 400.00 겁 500 500 N 600 PRESS PRES 700 ≻600.00 **⊦** 800 800 900 900 800.00 1000 1000 1100 1100

### Coverage of AIMSU-B radiances (16 km footprint)

2003102500 NOAA-15/16/17 AMSU-B channel 1 Brightness Temperature

763197 NOAA-15 764458 NOAA-16 764458 NOAA-17



#### Full resolution Innovations (O-P)



### Sensitivity of AMSU-B to temperature



## Procedure for direct assimilation of (AIMSU-A/B) radiances in 3D-Var

- choose radiances for which radiative transfer is appropriate
- correct systematic errors of the fast radiative transfer model
- carefully select radiances for land/sea/ice Example: land/ice; AMSU-A ch 6-10 sea; AMSU-A ch 3-10
- QC and thin to equivalent NWP model resolution

#### Quality control - AIMSU-A

- -Gross check, i.e., within physical limits.
- -Grody <u>cloud liquid water</u> > 0.3 mm => AMSU-A 1-5, 15 rejected.
- -Grody scattering index > 9 => AMSU-A 1-6, 15 rejected.
- -Background check: (O-P) > as, where s = error standard deviation a = 4.0, except = 3.0 for AMSU-A 3 and = 2.0 for AMSU-A 1-2 and 15.

-Any background check reject of a surface channel eliminates AMSU-A 1-5, 15.

# Quality control - AIMSU-B (similar ones for AIMSU-A)

| 12 | Dryness index reject             | Dryness index = Tb(AMSUB3) Tb(AMSUB5) Reject if (dryness index) > 0 for AMSU-B 3, -10 for AMSU-B 4, -20 for AMSU-B 5 | partial (AMSU-B 3-5) |
|----|----------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------|
| 13 | Bennartz scattering index reject | Bennartz scattering index> 40 over sea-ice, or 15 over sea, or 0 over land.                                          | full                 |
| 14 | innovation rogue check failure   | $(y-H(x))>a*(total error),$ where $\alpha=2$ for AMSU-B 1, $=3$ for AMSU-B 2 $=4$ for AMSU-B 3-5                     | single               |

# Scattering Index (Bennartz) to detect precipitation areas

SW (Scattering Index over Water)

Niveau: surface - Etiquette: N15 - Intervalle: 0 \* 1.0e+00 sans unites



64 37 10 -17 -45 -72 -99

## Final innovations (O-P) at analysis grid resolution



# First analysis tests; AMSU-B data only Moisture (Inq) corrections at 836 hPa



### First analysis tests; AMSU-B data only Temperature corrections at 836 hPa





# First analysis tests; AMSU-B data only Temperature and lnq correction profiles Tropics Extra-Tropics



## Full analysis tests highlighting problems

NOAA-15/16/17 ATOVS AMSU-B-5 Brightness Temperature June 2003

O-P6hr of Assimilated radiances

Nbox = 10553Mean = 0.15 $\sigma = 0.63$ 



## Corrections to problems with AMSU-B5

September 2003 NOAA-15/16/17 ATOVS AMSU-B-5 Brightness Temperature

O-P6hr of Assimilated radiances

Nbox = 7306 Mean = -0.08  $\sigma$  = 0.48



#### Biases over Eurasia in AMSU-B3

September 2003 NOAA-15/16/17 ATOVS AMSU-B-3 Brightness Temperature O-P6hr of Assimilated radiances

Nbox = 12167

Mean = 0.02

 $\sigma = 0.79$ 



#### Radiance Monitoring (O-P/O-A)



## Independent verification; mean 250 hPa ES corrections relative to the operational CMC analysis

AIMSU-B

GOES 6.7m



# Analysis Impact O-P/O-A against NH radiosondes Summer 2002



# Analysis Impact O-P/O-A against Tropical radiosondes Summer 2002



0-A m\_ua020801\_020930\_000\_e02b004.posv

# Analysis Impact O-P/O-A against SH radiosondes Summer 2002



Verifications of 24-h cicecagion against analyses over Arctic&NA; (250 hPa ES)



(00-24 h)
Precipitation
verification
over NA
Winter 2002

#### 24 hours precipitation forecast verification again observation

Synoptic network data for valid time 00-12z 00 to 24 hours forecast North AMERICA Assimilation of AMSUB





#### Number of observation

| 22700 | 9045 | 5421 | 2600 | 1540 | 929 | 621 | 418 | 277 | 202 |
|-------|------|------|------|------|-----|-----|-----|-----|-----|
| 22700 | 9045 | 5421 | 2600 | 1540 | 929 | 621 | 418 | 277 | 202 |

(00-24 h)
Precipitation
verification
over NA
Summer 2002



#### 24 hours precipitation forecast verification again observation

Synoptic network data for valid time 00-12z 00 to 24 hours forecast North AMERICA Assimilation of AMSUB





### Number of observation 12286 6143 4091 2175 1391 894 571 391 296 229 12286 6143 4091 2175 1391 894 571 391 296 229

### Anomaly correlation scores at 500 hPa at NWP Centres; September 2003



Hémisphère Nord/Northern Hemisphere CORR (00Z+12Z)



Prévisions / Forecasts

CMC (glb) - ECMWF - JAPAN - UKMET - data5

#### VERIFICATION vs ANALYSES GZ 500 hPa 09/2003

Hémisphère Sud/Southern Hemisphere CORR (00Z+12Z)



#### Conclusion

- The AMSU-B data of the NOAA-15, 16, and 17 platforms and the GOES 6.7μ (see N. Wagneur's poster) have a large impact on the moisture analyses of our global forecast system.
- The improvement of the upper and lower troposphere moisture analyses (250 & 850 hPa) persist through to 4 days of forecast and beyond with some positive impact on other variables such as winds and temperature.
- D. Anselmo's cross-validation of AMSU-B impacts with SSM/I TPW.

#### Future work in 3D-Var

- Regional Forecast System; done.
- QC-Var for TOVS data to increase the use of marginal data; Antarctical
- Raise the top of model and analysis from 10 hPa to 0.1 hPa in a hybrid vertical coordinate (AIRS project, stratospheric chemistry, support to Canadian Space Agency missions); still difficulties with moisture around and above 100 hPa; difficulties with RTTOV-7.
- IR radiances (2003 +)
  - assimilation of Meteosat and GMS
  - assimilation of AIRS and NOAA IR radiances
  - link the assimilation of Ts over land to soil moisture.

# Coverage of GOES 6.7m radiances (GOES West only currently)



#### Final GOES 6.7m selection for analysis



# Current AMSU-A and AMSU-B radiances of NOAA series



The channels selected for AMSU shown relative to the special characteristics of the atmosphere.