

Performance status of IASI on MetOp-A and MetOp-B

E. Jacquette ⁽¹⁾, **E. Péquignot** ⁽¹⁾, J. Chinaud ⁽¹⁾, C. Maraldi ⁽¹⁾, D. Jouglet ⁽¹⁾, S. Gaugain ⁽¹⁾, L. Buffet ⁽¹⁾, C. Villaret ⁽¹⁾, C. Larigauderie ⁽¹⁾, J. Donnadille ⁽²⁾, B. Tournier ⁽²⁾, C. Baque ⁽³⁾, J-C. Calvel ⁽³⁾, D. Coppens

(1) CNES, (2) Noveltis, (3) Akka, (4) EUMETSAT

ITSC-19 conference, March 26th 2014, Jeju Island, South Korea

OUTLINE

- 1 Introduction
- 2 Overall quality
- 3 Radiometric performances
- 4 Spectral performances
- 5 Conclusion

Introduction

 IASI (Infrared Atmospheric Sounding Interferometer) is a key element of the MetOp payloads.

MetOp

Very accurate Fourier Transform Spectrometer dedicated to atmospheric sounding that provides radiance spectra in the infrared spectral domain.

Status of the performances of IASI on MetOp-A and MetOp-B after 7 years and 1 year in orbit respectively.

- 1 Introduction
- 2 Overall quality
- 3 Radiometric performances
- 4 Spectral performances
- 5 Conclusion

L0 & L1 data quality

- IASI-A and IASI-B L1C data quality on normal operation mode:
 99.4% (B3), 99.6% (B1&B2)
- Spatial distribution of rejected spectra (< 0.6%):

Spectral band 3

- Main contributors to rejections:
 - Spikes (energetic particles), mostly in B3 in SAA
 - B1 and B2 are still available even if there is a spike in B3 (3 separated detectors)
 - NZpd computation failure
 - Over/underflow : due to sun reflection on clouds (cumulonimbus)

- 1 Introduction
- 2 Overall quality
- 3 Radiometric performances
- 4 Spectral performances
- 5 Conclusion

Sounder radiometric noise

Stability of the detector temperature

Focal plane temperature (K)

Nominal behaviour

> IASI-A: 95 K

► IASI-B: 94.2 K

 Stability of FPT → stability of instrument noise and non linearity correction

Sounder radiometric noise

IASI in-flight measured L0 NedT on internal Black Body target

- IASI-A and IASI-B radiometric noises are very close.
- Very stable, apart from ice effect between 700 and 1000 cm⁻¹.

Interpixel radiometry at L1C on EW

Interpixel radiometry at L1C on EW, orbital time scale, no scene selection
 IASI-A

- Radiometric interpixel at L1C is better than 0.1K on an orbital time scale: at L1C all pixels are radiometrically independent
- Still some effects in the interbands due to sharp gradients of band spectral filter.

Intercomparison between IASI-A and IASI-B: radiometry

Biases and standard deviation over the selected dataset
 (homogeneous and stable scenes, night, as many "A before B" as "A after B")

- Very good cross calibration: Biases < ~0.1K
- Statistics mostly on cold scenes
- Highest bias in B1 => shape still under investigation. Possible residual non linearity
- Note: absolute radiometric specification of each IASI is 0.5K @280K

- 1 Introduction
- 2 Overall quality
- 3 Radiometric performances
- 4 Spectral performances
- 5 Conclusion

Inputs of ISRF model

 Instrument Spectral Response Function (ISRF) parameters are characterized and monitored

- ◆Laser alignment (sampling laser wavelength)
- Instrument Point Spread Functions IPSF (Y and Z field angles and weights for each pixel)
- → Beam splitter and compensator plate (width, angles)
- ◆Cube corner trajectory :
 - » Moving corner cube displacement law (linear) + Fixed cube corner offset
 - » Interferometric axis

ISRF parameters are stable

Ghost effect

- Origin: sampling jitter (harmonic) induced by the cube corner compensation device
- Analysis done on BB spectra, maximum values of ISRFmax (@2760 cm⁻¹)

- IASI-A and IASI-B:
- Same behavior for :
- PN1 and PN2 : 1% (max)

FOVs projected onto the top part of the beam-splitter, vibrates the most, maximum effect

PN3 and PN4 : 0.6% (max)

FOVs projected onto the bottom part of the beam-splitter which is attached to the optical bench, weaker effect

- No significant evolution over time.
- IASI-B has the same behavior as IASI-A

Spectral calibration assessment

Spectral calibration: verification method

 Selection on homogeneous scenes, warm and clear in external calibration mode nadir viewing

- Comparison between IASI spectra with simulated spectra on homogeneous scenes in external calibration mode nadir viewing + inter-pixel comparison
- Simulate spectra with:
 - ♦ Radiative transfer model 4A/OP
 - → and ECMWF analysis fields: temperature + H₂O profiles

- Comparison using the correlation method in spectral windows.
- The relative spectral shift errors ($\Delta v/v$) between measured and calculated calibrated spectra must be inside the specification: +/- 2.10⁻⁶ = 2 ppm

Spectral calibration assessment: interpixel

Interpixel spectral shift on L1C products

- Inter-pixel spectral shifts at L1C for both IASI-A and IASI-B are < 0.2 ppm, all pixels are independent
- Inter-bands: sharp gradient of the spectral filter at the edge of spectral bands
- L1B (spectral shift correction) & L1C (SRF removal) processing work well

Absolute spectral calibration assessment

Absolute spectral calibration on L1C

- Results are very dependent of our capacity to modelize the spectrum:
- Radiative transfer: spectroscopy, line-mixing, pressure shift, non LTE,...
- Atmospheric profile, particularly for water vapor in B2, and in a lesser extent in B1
- Absolute calibration assessment is thus limited by the model

Intercomparison between IASI-A and IASI-B: spectral

 Comparison on the same dataset than for radiometry, with the same correlation method in spectral windows than for other spectral verifications

■IASI-A and IASI-B are very well inter calibrated: < 0.5 ppm</p>

- 1 Introduction
- 2 Overall quality
- 3 Radiometric performances
- 4 Spectral performances
- 5 Conclusion

Conclusion

- IASI on MetOp-A and MetOp-B performances are all within the requirements and even more:
- Data quality in normal operation > 99.4%
- Stable NedT and stable ISRF parameters
- Interpixel: radiometric < 0.1K, spectral shift < 0.2 ppm</p>
- Geolocation: IASI pixel centre localisation accuracy in AVHRR raster < 200 m.
 Stable and well within specification (5 km)
- IIS radiometric characteristics are very good: NedT ~0.6K, stable
- IASI-A and IASI-B have similar performances and are very well inter-calibrated:
 < 0.5 ppm spectral, < 0.1 K radiometry
- Both instruments are very stable and in good health, no sign of ageing for IASI-A

