

The Latest Progress of FY-3C

Peng ZHANG

National Satellite Meteorological Center, CMA

19th International TOVS Study Conference 26 March – 1 April 2014, Jeju Island, Republic of Korea

Outline

FY-3 program in general

□ Improvements of FY-3C

Results from the commission test

□ Timetable in 2014

Launched Satellites in FY Polar System

1988. 09. 07	FY-1A	Experimental	39 Days		
1990. 09. 03	FY-1B	Experimental	158 Days		
1999. 05. 10	FY-1C	Operational	6.5 Years		
2002. 05. 15	FY-1D	Operational	>10 Years	CZ-4	
2008. 05. 17	FY-3A	AM Orbit	Operation		
2010. 11. 05	FY-3B	PM Orbit	Operation		
2013. 9.23	FY-3C	AM Orbit	Commission Test		

First Generation

2014/4/18

Second Generation

FY-3 is the second generation of Chinese meteorological polarorbiting satellites. In the 1990s, the FY-3 series was designed in the concept to perform global, threedimensional, quantitative and multispectral observations under all weather conditions (i.e., both cloud-free and cloudy conditions) with multiple sensors on board

Fengyun Polar

Decommission: FY-1D

- In operation: FY-3A + FY-3B Global Coverage per 6 hours
- In trail operation: FY-3C

FY-3A LTC 10:00 AM

FY-3B LTC 13:40 PM

Initial Data Quality Assessment at ECMWF: Comparison of FY-3A with MetOp & Aqua

FY-3A/B follow-on

FY-3 OPERATIONAL SATELLITE INSTRUMENTS	FY-3C	FY-3D	FY-3E	FY-3F
MERSI – Medium Resolution Spectral Imager (I, II, III)	√(I)	√(II)	√(III)	√(II)
MWTS – Microwave Temperature Sounder (II)	\checkmark	\checkmark	\checkmark	\checkmark
MWHS – Microwave Humidity Sounder (II, III)	√(II)	√(II)	√(III)	√(II)
MWRI – Microwave Radiation Imager	\checkmark	\checkmark		\checkmark
WindRAD - Wind Radar			\checkmark	
GAS - Greenhouse Gases Absorption Spectromete		\checkmark		
HIRAS – Hyperspectral Infrared Atmospheric Sounder		\checkmark	\checkmark	\checkmark
OMS – Ozone Mapping Spectrometer				
GNOS – GNSS Occultation Sounder	\checkmark	\checkmark	\checkmark	
ERM – Earth Radiation Measurement (I, II)	√(I)			√(II)
SIM – Solar irritation Monitor (I, II,III)	√(II)		√(III)	
SES – Space Environment Suite	\checkmark	\checkmark	\checkmark	\checkmark
IRAS – Infrared Atmospheric Sounder	\checkmark			
VIRR – visible and Infrared Radiometer				
SBUS – Solar Backscattered Ultraviolet Sounder	\checkmark			
TOU – Total Ozone Unit	\checkmark			

FY-3 series is expected to last its measurements at least 15 years with additional four satellites. There are 16 improved or new instruments will be configured from FY-3C to FY-3F in the schedule.

FY-3C/D/E/F Payload Configuration

2. Improvements of FY-3C

FY-3 OPERATIONAL SATELLITE INSTRUMENTS	FY-3C
MERSI – Medium Resolution Spectral Imager (I, II)	√(I)
MWTS – Microwave Temperature Sounder (I, II)	√(II)
MWHS – Microwave Humidity Sounder (I, II)	√(II)
MWRI – Microwave Radiation Imager	\checkmark
WindRAD - Wind Radar	
GAS - Greenhouse Gases Absorption Spectromete	
HIRAS – Hyperspectral Infrared Atmospheric Sounder	
OMS – Ozone Mapping Spectrometer	
GNOS – GNSS Occultation Sounder	\checkmark
ERM – Earth Radiation Measurement (I, II)	√(I)
SIM – Solar irritation Monitor (I, II)	√(II)
SES – Space Environment Suite	\checkmark
IRAS – Infrared Atmospheric Sounder	\checkmark
VIRR – visible and Infrared Radiometer	\checkmark
SBUS – Solar Backscattered Ultraviolet Sounder	\checkmark
TOU – Total Ozone Unit	\checkmark

Launched on Sept 23, 2013

B = m

New Features:

- Inheriting all the instruments: 60% characteristics of the instruments specifications were improved twice than requirements
- New instrument: GNOS
- Improving the microwave sounding capability: MWTS II and MWHS II
- Improving the Solar measurements: SIM II

WMTS II

Parameter	Specification	CHINA MI
Scan Angle	±49.5°	10ROI
Pixels Per Scan Line	90	— 15
Quantization	13 bits	

19th International TOVS Study Conference 26 March – 1 April 2014, Jeju Island, Republic of Korea

WMHS II

Parameter	Specification
Scan Angle	\pm 53.35 $^{\circ}$
Pixels Per Scan Line	98
Quantization	14 bits

d₁/dlnp

GNOS

GNOS will receive two types of signal from GPS and China BeiDou-2. GNOS will observe over 1000 occultations per day with GPS and BD satellites,

Expected Products

- Temperature profiles
- Humidity profiles
- Refractivity profiles
- Electronic content profiles

Frequency	GPS L1/L2; BD2			Temperature	Humidity	Refracti vity	Electronic Content
Receiver Channels	8 (Navigation) 4 (Occultation)	RMS Accuracy	Low Tropos.	0.5-3 k	0.25-1.0 g/kg	0.1- 0.5%	(100-600 km) < 20%
Sampling rate	1 ~ 50 Hz		High Tropos.	0.5-3 k	0.05-0.2 g/kg	0.1-0.2%	
Crystal oscillator	1e-11 (100s)		Low Stratos.	0.5-3 k		0.1-0.2%	
Real-time position	10m (RMS)		High Stratos.	0.5-5 k		0.2-2.0%	
Real-time velocity	0.1m/s(RMS)						
Phase center accuracy	2 mm (RMS)						
Antenna number	1 (Navigation) 2 (Occultation)	GNOS	instrume	ent	GNOS of	servatio	AN

GNOS

GPS Occultation Events: 426 Beidou Occultation Events: 184

Products

- Temperature profiles
- Humidity profiles
- Refractivity profiles
- Electronic content profiles

19th International TOVS Study Conference 26 March – 1 April 2014, Jeju Island, Republic of Korea

3. Results from the commission test

First Global Image on Oct. 2, 2013 from MERSI

FY-3C MERSI: The Florida Peninsula

26 Warch – 1 April 2014, Jeju Island, Republic of Korea

FY-3C MERSI: Arabian Peninsula

26 March – 1 April 2014, Jeju Island, Republic of Korea

SRF homogeneity of the Multi detectors

The improved detector homogeneity allows the improved cloud mask

Global Image on Oct. 8, 2013 from MWHS

19th International TOVS Study Conference 26 March – 1 April 2014, Jeju Island, Republic of Korea

NEdT Stability of MWTS 2013.12.1-30

Uncertainty of Radiance Calibration

IR from inter-calibration

MW from uncertainty estimation of the on-orbit calibration system

Specification
FY3C On-orbit

2014/4/18

19th International TOVS Study Conference 26 March – 1 April 2014, Jeju Island, Republic of Korea

O-B of MWTS

mean of observation minus simulation 0 -1 -2 -3 -4 -5 3 5 6 7 8 9 10 11 12 13 4 channeal number std of observation minus simulation 2.5 ERA-Interim corrected 2

1.5 1 0.5 0 3 5 7 13 4 6 8 9 10 11 12 channeal number

19th International TOVS Study Conference 26 March – 1 April 2014, Jeju Island, Republic of Korea

Conclusion of FY-3C

One new instrument for occultation sounding

- Three instruments has been improved
- Good Image Quality

Good Performance of the NEΔN and Calibration accuracy: 60% NEΔN of instruments on the FY-3C has been improve at least twice than on FY-3A/B

Current in the trail operation

4. Timetable in 2014

Launch : 23 Sept, 2013 Commission Test : Until Feb., 2014 Instrument Performance test SDR calibration Trail Operation : March to May, 2014 EDR validation : Since June, 2014 Operation Global data release Fengyun View toolkit release FY-3C IPP for DB users (since Sept., 2014)

