

Procedures to Characterize Sounding Profiles using Conventional and Reference/Dedicated Observations --- NPROVS & NPROVS+

Tony Reale¹ and Bomin Sun² ... and many others

1 STAR/NESDIS/NOAA

2 IMSG at STAR/NESDIS/NOAA

The 19th International TOVS Study Conference (ITSC-19) Jeju Island, South Korea 26 March – 1 April 2014

NOAA Products Validation System (NPROVS)

NPROVS: Product (EDR) validation / monitoring from the ground (http://www.star.nesdis.noaa.gov/smcd/opdb/nprovs/index.php)

NPROVS

12/16 to 12/26 2013 ... 12,335 Collocations

Environmental Data Graphical Evaluation (EDGE) Analytical Interface ...

... routine monitoring to deep dive

AND ATMOSP

NOAA

RTMENT O

NPROVS routine monitoring & analysis

Routine monitoring can be efficiently conducted under different sampling sorting, e.g., land/sea, day/night, clear/cloudy, IR+MW/MW-only, etc.

NOAA IASI retrieval evaluation using 3-yr conventional RAOB-IASI collocations

Three yrs (2010-2012) of IASI-RAOB collocations from NPROVS are used.

The sample for collocations (3 hr and 100 km) with "accepted" IASI is ~314 000.

Major geophysical parameters in the IASI retrieval system are physically consistent to each other.⁶

The 19th International TOVS Study Conference 26 March – 1 April 2014 Jeju Island, South Korea

Characteristics of Conventional RAOBs and their Use in Satellite Sounding Product Validation

Bomin Sun, Tony Reale, Mike Pettey and Frank Tilley (Poster # 8P.05)

Overview based on several of our recent journal publications on:

- RAOB measurement (T and H20) accuracy
- Special vertical profiles (eg, inversion, multiple changes) sampled by RAOB
- RAOB-satellite spatial and temporal mismatch impact
- Usefulness in satellite data validation

STAR LOVS Integrated Calibration / Validation System Long-Term Monitoring

onitoring and characterizing satellite instrument performance in orbit for weather, climate and environmental applications

ICVS: Long-Term Sensor Calibration/Validation Monitoring (SDR) from Space (http://www.star.nesdis.noaa.gov/icvs/index.php)

DORA MOLINE CALL AND ATMOSPHERE MOLINE CALL AND

Routine Compilation and Archive of Collocated Satellite (SDR, EDR) and Reference / Dedicated Observations (GRUAN / JPSS) **Provides NOAA / STAR Oversight** to guide NOAA-Unique (Barnet, Gambacorta) Algorithm and RTM Monitoring and Development

Reference Observations

Global "Reference" Upper Air Network (GRUAN)

GRUAN 6th International Coordination Meeting (ICM-6) March 10-14, GreenBelt, Hilton *... special Tuesday session on satellite synergies*

... sites provide reference radiosonde (RS92) plus ancillary ground (lidar, MWR, FTIR ...) observations, adherence to best measurement practices GRUAN Manual and Measurement Guideline documents) including specification of "Measurement Uncertainty" with plans for up to 40 sites (5+ years)

Dedicated Observations

Dedicated S-NPP RS92 RAOB funded by JPSS (Mitch Goldberg)

	ARM-TWP	ARM-SGP	ARM-N SA		ARM- TWP	ARM-SGP	ARM-N SA	PMRF	BCCSO	NOAA AEROSE
Locatio n	Manus Island, Papua New Guinea	Ponca City, Oklahoma, USA	Barrow, Alaska, USA	Location	Manus Island, Papua New Guinea	Ponca City, Oklahoma, USA	Barrow, Alaska, USA	Kauai, Hawaii, USA	Beltsville, Maryland, USA	Tropical North Atlantic Ocean
	Tropical Pacific Warm Pool, Island	Midlatitude Continent, Rural	Polar Continent	Regime	Tropical Pacific Warm Pool, Island	Midlatitude Continent, Rural	Polar Continent	Tropical Pacific, Island	Midlatitude Continent, Urban	Tropical Atlantic, Ship
	90	180	180	Planned N	90	180	180	40	_	≈ 60–120
	42	92	93	Launched	42	92	93	40	23	2
	-	88	90	Launched	-	88	90	-	-	0
	Aug- present	Jul-present	Jul-present	Time Frame	Aug- present	Jul-present	Jul- present	May, Sep	Jun–Jul, Sep– present	Jan-Feb 2013

NPP CrIMSS EDR ICV Dedicated RAOB Sites

... ongoing re-structure of ARM scheduling to provide "sustained" year round coverage (Tony Reale)

Characterization of atmospheric column well suited to assess satellite product

NPROVS+

2050 collocations (350 Dedicated, 1700 GRUAN) ... 5mos

NPROVS+ EDR Validation Results

IR + MW Pass QC ... AEROSE only

GRUAN Reference Measurement Principles

Two observations on different platforms are consistent or comparable if

$$|m_1 - m_2| < k\sqrt{\sigma^2 + u_1^2 + u_2^2}$$

Where (σ) is the atmospheric variability due to time/space mismatch, and u is the uncertainty of variable m.

Normally, m_1 and m_2 are considered to be statistically consistent to each other if k < =1.96.

... at this preliminary stage:

K = ABS(X – GRUAN) / Uncertainty (u2)

where "X" either SAT or NWP "need EDR uncertainty estimates for robust validation"

Satellite EDR Validation

... the common sample size of 146 in troposphere is reduced from over 1800 prior to subsampling based on the qc indicator and sensor combination. This reduction in yield was a factor of 3+ greater for IASI (EU) versus from NOAA and is among the many characteristics that must be considered in overall product comparisons. Furthermore, in computing "K", both the σ and u_1 terms (eq 1) were set to zero so the comparison is pessimistic. Work will be undertaken to bring in realistic values for these terms and enable comparable comparisons in the satellite sensor radiance space ... with realistic values, K of 1.96 indicate consistent observations.

NWP Monitoring

Radiosonde GFS 6 Hour

ECMWF ANALYSIS

Global RAOB (2008-2011) Difference from COSMIC Tdry (Sun et al. JGR 2013)

Sun, Reale, Ballish, Collard, Seidel ... propose updated "radcor" being tested for NOAA nwp assimilation

Summary

- NPROVS and NPROVS+ operate daily at NOAA STAR
- NPROVS+ traceable to reference
- Satellite, Ground and NWP Monitoring/feedback
- "K" profiles supplement RMS for product performance
- Internationalization of NPROVS+ being considered (NOAA/Europe)

THANK YOU

- Reference/dedicated RAOB (RS92) is anchor
- Raw, Digicora, GRUAN, GTS ... (4 RAOB flavors)
- Append Ground Ancillary (MWR, FTIR, Lidar...)
- Compress to 1km layers (AIRS Science team) ... also retain original hi-density
- Single closest satellite EDR within +/- 6hr and 150km (250km for COSMIC)
- NWP (GFS 6-hr, CFSR, ECMWF Anal ...)
- For hyperspectral (S-NPP, MeTop, Aqua) append all EDR / SDR within 500km

GPSRO Anchored Collocation Validation

NOAA

- Integrate STAR (Weng, Reale) and CIMSS (Knuteson / Feltz) approaches
- EDR and SDR
- GPS RO provides Reference for EDR, SDR and RTM

Validation & Algorithm Development

NASA

NPROVS+ ... unified validation and development²⁴