

CrIS Full Spectral Resolution SDR and S-NPP/JPSS-1 CrIS Performance Status

Yong Han

NOAA Center for Satellite Applications and Research, College Park, MD, USA and CrIS SDR Science Team

> ITSC-20 October 27 – November 3, 2015 Lake Geneva, Wisconsin, USA

CrIS SDR Science Team

PI	Organization		
Yong Han	NOAA/STAR		
Hank Revercomb	U. of Wisconsin (UW)		
Larrabee Strow	U. of Maryland Baltimore County (UMBC)		
Deron Scott	Space Dynamic Lab (SDL)		
Dan Mooney	MIT/LL		
Dave Jonson	NASA Langley		
Lawrence Suwinski	Harris		
Joe Predina	Logistikos		
Carrie Root	JPSS/DPA		
Wael Ibrahim	Raytheon		

Outline

- S-NPP CrIS performance status
- S-NPP CrIS full spectral resolution measurements and SDRs
- SDR algorithm improvements
- JPSS-1 CrIS status
- Summary

S-NPP CrIS Normal & Full Resolution SDRs

Spectral resolution modes:

- Full spectral resolution (FSR):
- 0.625 cm⁻¹ all three bands
- 2211 channels
- Normal spectral resolution (NSR): - 0.625 cm⁻¹(LW), 1.25 cm⁻¹(MW),
 - 2.5 cm⁻¹(SW)

NOAA IDPS

Processing

Data on CLASS

- 1305 channels

NOAA CrIS SDR processing:

Planned reprocessing:

NOAA will reprocess CrIS data with latest ADL Block-2.0 5.x code in early 2016

S-NPP CrIS NEdN

Stable NEdN performance

S-NPP CrIS Gain & Performance Stability

Calibration Algorithm Improvement

- CrIS SDR radiance spectra are un-apodized
- Ringing artifacts appeared when spectra are compared among the 9 FOVs, between forward and reverse sweep direction, and between observed and simulated spectra
- These ringing artifacts are due to
 - Non-circular onboard digital FIR filtering (non-circular convolution)
 - Spectral calibration applied to radiometrical ratio, which distorts information for spectral calibration.
 - Channel response model in radiance simulation that does not take into account the instrument responsivity
- Progress has been made in addressing these issues

FTS Optical & Electrical Responsivity Modifies Shape of Scene Spectrum

Predina et al, OSA HISE, 2015

Optimizing Calibration Equation

Current algorithm:

The new algorithm applies spectral calibration to raw spectra to take into account the effect of instrument responsivity and allow a wider bandpass post-filter *f*

 S_e , S_{DS} , S_{ict} – raw spectra of earth scene, deep space & internal calibration target B_{ICT} – calculated ICT spectrum

SA, SA^{-1} – self-apodization and self-apodization correction matrices

F – spectral resampling matrix

f- bandpass post-calibration filter

Responsivity in Spectrum Simulation

$$S_{Cal} = B_{ICT} \cdot \frac{F \cdot SA^{-1} \cdot f \cdot \{\frac{\Delta S_1}{\Delta S_2} | \Delta S_2 |\}}{F \cdot SA^{-1} \cdot f \cdot | \Delta S_2 |}$$

1

Use of instrument responsivity in CrIS radiance simulation (suggested by UW) is consistent with the new calibration equation

Double FFT

*

P_r

S_{Ibl}

10

Correction to Error due to Non-circular Filtering

- Due to non-circular convolution, the FIR filter can not be completely removed from spectrum *S* by taking *S*/*FIR*, causing ringing artifacts
- A method was developed to reduce ringing artifacts by using longer interferograms

Length of interferograms used in calibration:

	LW	MW	SW
Data points used in current algorithm	864	1050	797
Current available data points used in new algorithm evaluation	866	1052	799
Additional data points available Nov. 2015	874	1052	808

New Calibration Algorithm Evaluation

The new algorithm significantly reduces ringing artifacts

Simulation Issue: Responsivity vs Raised-cosine

- Ibl_{resp} CrIS spectrum created with LBL spectrum filtered with responsivity
- lbl_{Cosfilter} CrIS spectrum created with LBL spectrum filtered with a function that is flat in-band and a raised-cosine outside of the band at each end

Wavenumber (cm⁻¹)

JPSS-1 CrIS Status

- J1 CrIS successfully completed comprehensive pre-launch test program and integrated to J1 for spacecraft level testing
- Calibration LUTs (ILS/nonlinearity/geo-mapping parameters) determined
- J1 CrIS performance as good or better than S-NPP

JPSS-1 NEdN

S-NPP NEdN

J1 CrIS ICT Performance Improved From SNPP

- J1 Internal Calibration Target (ICT) redesigned to improve performance
 - Specular coating provides increased emissivity and better stray light rejection
 - Cavity wedge design helps eliminate views to other optical surfaces within instrument
 - Additional PRT provides increased temperature and gradient knowledge
 - Results in simplified SDR processing and more accurate calibration performance

From Harris

Summary

- S-NPP CrIS performance has been stable and consistent; there is no significant performance degradation
- S-NPP CrIS full spectral resolution SDRs have been routinely generated since Dec. 4, 2014, available to the public
- The calibration algorithm improvements significantly reduce radiance ringing artifacts and are being implemented for operational processing
- Pre-launch ground testing program has been successfully completed and results show JPSS-1 CrIS performance as good or better than S-NPP CrIS