Analysis of ATMS and AMSU Striping Noise from Their Earth Scene Observations

Zhengkun Qin¹, Xiaolei Zou¹, Fuzhong Weng²

- 1. Center for data assimilation in research and applications Nanjing University of Information Science & Technology, China
- 2. National Environmental Satellite, Data & Information Service, National Oceanic and Atmsopheric Administration, Washington, DC, USA

March 26, 2014

Outline

- ATMS Striping Phenomena
- Striping analysis based on PCA and EEMD
- Striping noise of water vapor channels
- Striping analysis of Maneuver data
- Summary

Suomi NPP ATMS Striping

It was first identified by NWP user community through the global distribution of the bias (O-B) between ATMS observations and simulations. Unlike AMSU-A, ATMS O-B displays a distinct O-B irregularity in its along-track direction. NWP users refer this irregularity as striping brightness temperatures or radiances.

Global Distribution of ATMS Ch10 O-B

February 24, 2012

Obvious Stripping noise can be found in the O-B figure of Ch10

Principle Component Analysis (PCA)

Data Matrix:
$$A_{96\times N} = \begin{pmatrix} TB_{1,1} & \cdots & TB_{1,N} \\ \vdots & \ddots & \vdots \\ TB_{96,1} & \cdots & TB_{96,N} \end{pmatrix}$$

 $TB_{k,j}$: Brightness temperature at the kth FOV and the jth scanline

Principle Component Analysis (PCA)

The covariance matrix: $\mathbf{S} = \mathbf{A}\mathbf{A}^T$

$$\vec{\mathbf{S}e_i} = \lambda_i \vec{e_i}$$

$$(\vec{u_1} \quad \vec{u_2} \quad \cdots \quad \vec{u_{96}})^T = \mathbf{E}^T \mathbf{A}$$

$$\vec{e_i} = \begin{pmatrix} e_{1,i} & e_{2,i} & \cdots & e_{96,i} \end{pmatrix}$$

$$: \text{ the principle component (PC) for the } ith \text{ mode.}$$

$$\vec{u_i} = \begin{pmatrix} u_{i,1} & u_{i,2} & \cdots & u_{i,N} \end{pmatrix}$$

$$: \text{ the PC coefficient for the } ith \text{ mode.}$$

The ATMS data can be then expressed as:

$$\mathbf{A} = \sum_{i=1}^{96} \vec{e}_i \vec{u}_i$$

PCA modes of TB for ATMS Ch10

Scan angle dependence of the brightness temperature

Variations same for all FOVs are tend to appear in the 1st mode

PCA modes of TB for NOAA-18 AMSU-A Ch9

Brightness Temperature at nadir

EEMD Method

Raw data $R_0(t) = T_b(t)$

 $C_{n-1} \leftarrow$ Intrinsic Mode Function (IMFs) Mean of the envelopes of R_{n-1}

$$R_n(t) = R_{n-1}(t) - C_{n-1}(t)$$

$$T_{b}\left(t\right) = \sum_{j=1}^{n} C_{j}\left(t\right) + R_{n}\left(t\right)$$

Huang and Wu (2008) and Wu and Huang (2009)

Brightness temperature for the first PCA mode at nadir

Power Spectral of the first three IMFs

Power spectral density distributions

Global distribution of Stripping noise

Before-After Of O-B for ATMS Ch10

-0.25 -0.20 -0.15 -0.10 -0.05 0.0 0.05 0.10 0.15 0.20 0.25

After

Obs and O-B of the TB

PCA modes of TB for ATMS Ch22

Eigenvector and TB at nadir

Striping noise can be found in both ATMS Ch22 and NOAA-18 MHS Ch3

Global distribution of stripping noise

SNPP ATMS Ch 22

Striping noise of maneuver TB

Striping Index (SI) of maneuver TB

Summary

- For tempearture channels, ATMS's striping noise is much stronger than AMSU-A
- For water vapor channels, both ATMS and MHS (AMSU-B) have striping noise
- Method based on PCA and EEMD can filter the striping noise obviously and flexibly
- Root-cause and more accurate filters need further investigation

Thank you !

Questions ?