

CrIS SDR Calibration and Cross-sensor Comparisons

Yong Han

NOAA Center for Satellite Applications and Research, College Park, MD, USA and CrIS SDR Science Team

> ITSC-19 March 25 – April 1, 2014 Jeju Island, South Korea

Outline

- CrIS SDR Science Team
- Data processing and Cal/Val process
- SDR product quality and calibration uncertainties
- Cross-sensor comparisons
- Summary

SDR: Sensor Data Record

JPSS CrIS SDR Science Team member & Cal/Val Process

CrIS SDR calibration and validation (Cal/Val) team members (Subject Matter Experts):

Organization	PI	
NOAA Center for Satellite Applications & Research (NOAA/STAR)	Yong Han	
University of Wisconsin (UW)	Hank Revercomb	
University of Maryland Baltimore County (UMBC)	Larrabee Strow	
Space Dynamics Laboratory/Utah State University (SDL)	Deron Scott	
Massachusetts Institute of Technology/Lincoln Labs (MIT/LL)	Dan Mooney	
Northrop Grumman Aerospace Systems	Degui Gu	
Exelis-ITT	Mike Cromp	
NASA	Dave Johnson	
Raytheon	Wael Ibrahim	

CrIS SDR Validation phases:

- Early Orbit Checkout (EOC), 18 January 23 February 2012
- Intensive Calibration and Validation (ICV), 23 February 2012 20 December 2013
- Long-term Monitoring (LTM), remaining NPP mission

CrIS System

CrIS Spectral Parameters

	Spectral Dange	Normal		Full Resolution Mode*	
Band	(cm ⁻¹)	Resolution (cm ⁻¹)	MPD (cm)	Resolution (cm ⁻¹)	MPD (cm)
LW	650-1095	0.625	0.8	0.625	0.8
MW	1210-1750	1.25	0.4	0.625	0.8
SW	2155-2550	2.5	0.2	0.625	0.8

* NOAA intends to operate CrIS in full spectral resolution (FSR) mode in near future

CrIS FOV, FOR and Scan

- Each scan has 30 Earth view Field of Regards (FORs)
- Each FOR has 9 Field of Views (FOVs)

CrIS SDR CalVal Milestones

SDR validated in three stages: Beta, Provisional, and Validated

- Geolocation CalVal
- CrIS instrument and SDR trending and monitoring

CrIS Data and SDR Software Available to Public

- CrIS Raw Data Records (RDRs) and Sensor Data Records (SDRs)
 - RDRs: interferogram measurements and calibration data (inputs of the SDR software)
 - SDR: radiance products (outputs of the SDR software)
 - Data available at http://www.nsof.class.noaa.gov/saa/products/welcome
- CrIS SDR software (ADL)
 - CrIS SDR software is a component of the Algorithm Development Library (ADL), which runs on Linux as well as some other computing platforms
 - ADL shares the same processing software as the operational software that runs on the Interface Data Processing Segment (IDPS)
 - ADL software package available at

https://jpss-adl-

wiki.ssec.wisc.edu/mediawiki/index.php/ADL_Algorithm_Development_Library

Example of SDR Product Items

Radiance (900 cm⁻¹)

NPP CrIS Brightness Temperature, 11 µm (900 cm⁻¹), Mapped, Ascending, 12/02/2013

NPP CrIS Brightness Temperature, 11 µm (900 cm⁻¹), Mapped, Descending, 12/02/2013

Overall SDR quality flag (Blue – good)

NPP CrIS Mid Wave SDR Overall Quality Flag, Mapped, Ascending, 12/02/2013 (Blue: Good; Green: Degraded; Red: Invalid)

NPP CrIS Mid Wave SDR Overall Quality Flag, Mapped, Descending, 12/02/2013

CrIS SDR User's Guide:

http://www.star.nesdis.noaa.gov/jpss/documents/UserGui des/CrIS SDR Users Guide 1p0 TBD.pdf

CrIS data monitoring website: http://www.star.nesdis.noaa.gov/icvs/status NPP CrIS.php

CrIS Data Quality and Calibration Uncertainty Estimates

CrIS Data Quality

Daily occurrence of Good SDR spectra

LW	99.9817%
MW	99.9817%
SW	99.9816%

- No ice contamination on detector so far
- No significant South Atlantic Anomaly (SAA) impact
- No Fringe Count Error (FCE) so far

Mainly due to sun-glint saturation

CrIS Noise (NEdN)

Spectral Calibration Accuracy

Earth-rotation Doppler Effect

Doppler frequency shift up to 1.25 ppm detected, which matches to the theory The shift is small and is not corrected

(Chen, et al. 2013, AO)

Radiometric Uncertainty (RU)

Geolocation Accuracy Assessed with VIIRS

VIIRS I5 band data (350m spatial resolution) are used to assess CrIS geolocation accuracy

Pixel geolocation accuracy: < 0.4 km nadir < 1.3 km (Zenith angle < 30°)

Due to VIIRS "bowtie deletion", this method does not apply to pixels with zenith angle larger than 30°

Nadir geolocation accuracy time series

NOAA/STAR CrIS SDR Team on Mon Nov 18 092013013

Time

Wang et al. 2013, JGR

Cross-sensor Comparisons

Hot Scene CrIS/VIIRS Comparison

Cold Scene CrIS/VIIRS Comparison

Time Series of CrIS/VIIRS Comparison

CrIS/VIIRS daily mean difference are < 0.1 K and trends are < 10 mk/yr

CrIS/AIRS SNO Comparisons

CrIS/AIRS SNO Time series at 899.97 cm⁻¹

From L. Wang, NOAA/STAR

CrIS/IASI(Metop-A) SNO Results from Feb. to Dec. 2013

CrIS/IASI(Metop-B) SNO Results from Feb. to Dec. 2013

Preparing for Full Spectral Resolution Mode Operation

- S-NPP CrIS has so far turned on the FSR mode three times for testing
- Preparation is ongoing for FSR mode operation some time this year

References (JGR Special Issue)

- Han, Y., et al. (2013), Suomi NPP CrIS measurements, sensor data record algorithm, calibration and validation activities, and record data quality, J. Geophys. Res. Atmos., 118, doi:<u>10.1002/2013JD020344</u>
- Tobin, D., *et al.* (2013), Suomi-NPP CrIS radiometric calibration uncertainty, J. Geophys. Res. Atmos., 118, 10,589–10,600, *doi:10.1002/jgrd.50809*
- Strow, L. L., H. Motteler, D. Tobin, H. Revercomb, S. Hannon, H. Buijs, J. Predina, L. Suwinski, and R. Glumb (2013), Spectral calibration and validation of the Cross–track Infrared Sounder (CrIS) on the Suomi NPP satellite, J. Geophys. Res. Atmos., 118, doi:10.1002/2013JD020480.
- Zavyalov, V., M. Esplin, D. Scott, B. Esplin, G. Bingham, E. Hoffman, C. Lietzke, J. Predina, R. Frain, L. Suwinski, Y. Han, C. Major, B. Graham, L. Phillips (2013), Noise performance of the CrIS instrument, J. Geophys. Res., doi: 10.1002/2013JD020457
- Wang, L., D. A. Tremblay, Y. Han, M. Esplin, D. E. Hagan, J. Predina, L. Suwinski, X. Jin, and Y. Chen (2013), Geolocation assessment for CrIS sensor data records, J. Geophys. Res. Atmos., 118, doi:10.1002/2013JD020376.

- The CrIS instrument has been working very well and stable since the beginning of the NPP mission
- CrIS SDR product has been validated, which meets the requirements with large margin
- Instrument performance and SDR calibration/validation are well characterized and documented
- The differences between CrIS and IASI/AIRS/VIIRS are in general within 0.1-0.2 K

Backup Slides

IASI/CrIS vs. VIIRS M15

Old a2: nonlinearity correction coefficients used before Feb. 20, 2014

29

IASI/CrIS vs. VIIRS M16

New a2: updated nonlinearity correction coefficients used in operation after Feb. 20, 2014 $_{30}$ Old a2: nonlinearity correction coefficients used before Feb. 20, 2014