### Combined Polar Hyper-spectral (PHS) and Geo-multispectral (ABI) Data <u>- Demonstration of the Need for a Geo-Hyperspectral Sounder</u>

<u>W. Smith Sr.<sup>1,2</sup>, R. Knuteson<sup>1</sup>, H. Revercomb<sup>1</sup>, E. Weisz<sup>1,</sup>, Q. Zhang<sup>3</sup></u> <sup>1</sup>U. of Wisconsin (USA), <sup>2</sup>Hampton U. (USA), <sup>3</sup>Nanjing U. (China)



ITSC-22 Saint-Sauveur, Quebec 31 Oct. - 6 Nov., 2019

## **Optimizing Time and Spatial Resolution**



## **Single FOV Retrieval Methodology**

### Dual EOF Regression (DR) for PHS (15-km)

- Accounts for Trace Gases, Clouds, Surface Emissivity/Skintemperature in the regression training
- Uses "all" spectral channels (i.e., 50 PCs) to optimize S/N
- Accurate cloud heights, profiles above cloud & below thin and scattered cloud (Effective OPD<1.5)</li>
- Vertical de-aliasing for NWP Data Assimilation (Alias=FB Calc. Radiance Retrieval – FB Profile)

### **Clear-sky Regression for Multi-spectral ABI (2-km)**

• Clear 2-km FOVs only

## **De-Aliasing Using Forecast Model Profile**

**<u>Problem</u>**: DR method uses a global statistical training data set. Imperfect skill, due to lack of vertical resolution in radiances leads to a vertical aliasing error.

**Solution:** Calculate radiance spectrum from forecast profile (FP) and perform DR retrieval using simulated forecast radiances.

Vertical Alias = Simulated Radiance Retrieval Profile – Forecast Profile



### Final Retrieval = DR Retrieval – Vertical Alias

ITSC-22 Saint-Sauver, Quebec 31 Oct. - 6 Nov., 2019

## **Fusion of PHS and ABI Soundings**



\*Weisz, E., B. Baum, and W. P. Menzel, 2017a: Fusion of satellite-based imager and sounder data to construct supplementary high spatial resolution narrowband IR radiances, J. Appl. Remote Sens. 11(3), 036022 (2017)

## **PHS + ABI** Retrieval Fusion Example



ITSC-22 Saint-Sauveur, Quebec 31 Oct. - 6 Nov., 2019

#### Polar Hyper-spectral 700 hPa Relative Humidity



# **Application to NWP**

## Combining Polar & Geo Soundings with AHI Over China

### • PHSnAHI:







• PHSnGHSnAHI: Combine 'PHS' with 'GHSnAHI'

### 2-hr interval GIIRS & GIIRS + AHI Combined Soundings March 3, 2019 (04:00 to 10:00 UTC)

### **GIIRS 500 hPa Relative Humidity**



### **GIIRS + AHI 500 hPa Relative Humidity**

![](_page_9_Figure_4.jpeg)

![](_page_10_Figure_0.jpeg)

## 27 Hour Forecast 12 UTC on 3/3/19 to 18 UTC on 3/4/19

![](_page_11_Figure_1.jpeg)

## 33 Hour Forecast 12 UTC on 3/3/19 to 24 UTC on 3/4/19

![](_page_12_Figure_1.jpeg)

### 3-hr Accumulated Precipitation False Alarm (FAR), Probability of Detection (POD) and Critical Success Index (CSI)

![](_page_13_Figure_1.jpeg)

ITSC-22 Saint-Sauveur, Quebec 31 Oct. - 6 Nov., 2019

## Summary and Conclusion

- To Geo-Hyperspectral soundings are being simulated by combining directbroadcast (DB) polar hyperspectral (PHS) measurements (i.e., CrIS and IASI onboard JPSS and Metop platforms, respectively) with geostationary multispectral ABI imagery observations.
- The high spatial and temporal resolution PHSnABI sounding products are being assimilated in NOAA RAP/HRRR-like models to demonstrate their value for improving NWP. *Hurricane, tornado, and daily weather forecast applications* show improved forecasts with geo-hyperspectral-like sounding retrievals..
- The Imager/Sounder Retrieval fusion technique has been applied to FY-4A GIIRS Geo-Hyper-spectral and Himawari multi-spectral AHI data. The Geo-Hyperspectral Data fill in important space and time gaps in the polar data. It has been demonstrated that the GIIRS real Geo-Hyperspectral retrievals improve precipitation forecasts provided using PHSnAHI retrievals.
- The results show that <u>real</u> Geo-hyperspectral sounder measurements are needed to obtain accurate vertical soundings at high space and time resolution as needed to benefit high impact weather forecasts.