

Impact Analysis of LEO Hyperspectral Sensor IFOV size on next generation NWP model forecast performance

Agnes Lim¹, Allen Huang¹, James Jung¹, Zhenglong Li¹, Jack Woollen², FW Nagle¹, Greg Quinn¹, S. B. Healy³, Jason Otkin¹, Mitch Goldberg⁴ and Robert Atlas⁵

> 1. CIMSS/SSEC 2. IMSG/NOAA/NCEP/EMC 3. ECMWF 4. NOAA /JPSS Program Science Office 5. NOAA Atlantic Oceanographic and Meteorological Laboratory

> > 4 Dec 2017

International TOVS Study Conference XXII

Current CrIS FOVs verses next generation CrIS FOVs

Current CrIS FOVs verses next generation CrIS FOVs

Smaller FOV size → more chance of hole hunting for clear sky condition

Current CrIS FOVs verses next generation CrIS FOVs

Cloud Mask

Current CrIS FOVs verses next generation CrIS FOVs

Smaller FOV size → more chance of hole hunting for clear sky condition

How will assimilation of CriS observations with smaller FOVs impact forecast

performance?

Observing System Simulation Experiment

Experiment Framework

OSSE Calibration – Clear sky counts

OSSE Calibration –QC count ratios

OSSE Calibration –

RAOB uv

Ratio of Standard Deviation

Before iterative tuning After iterative tuning

Scorecard (2006-06-01 to 2006-06-30)

		P Lev	N. Hemisphere			S. Hemisphere			Tropics				
			Day 1	Day 3	Day 5	Day 1	Day 3	Day 5	Day 1	Day 3	Day 5		
RMSE	Heights	100 hPa											
		500 hPa											
		850 hPa											
		1000 hPa											
	Wind Vector	200 hPa											
		500 hPa											
		850 hPa										OSSE_EXP	99.9% signififcant l
		1000 hPa										better than	99% signififcant level
	Temp	100 hPa										OSSE CTRI	0E% significant lovel
		500 hPa											
		850 nPa										Neutral	No statistical significant difference
		1000 hPa										OSSE_CTRL	95% signififcant level
Bias	Heights	100 hPa										worse than	99% signififcant level
		850 hPa										OSSE_EXP	99.9% signififcant level
		1000 hPa										_	0
	Wind Vector	200 hPa					<u> </u>						
		500 hPa											
		850 hPa											
		1000 hPa											
	Temp	100 hPa											
		500 hPa											
		850 hPa											
		1000 hPa											

Scorecard (2006-06-01 to 2006-06-30)

	B Lov	N. I	Hemisph	nere	S. Hemisphere			
	F LEV	Day 1	Day 3	Day 5	Day 1	Day 3	Day 5	
Anomaly Correlation	Heights	250 hPa						
		500 hPa						
		700 hPa						
		1000 hPa						
	Vector Wind	250 hPa						
		500 hPa						
		850 hPa						
	Temp	250 hPa						
		500 hPa						
		850 hPa						
	MSLP	MSL						

OSSE_EXP	99.9% signififcant l
better than	99% signififcant level
OSSE_CTRL	95% signififcant level
Neutral	No statistcal significant difference
OSSE_CTRL	95% signififcant level
worse than	99% signififcant level
OSSE_EXP	99.9% signififcant level

OSSE deficiencies

- 1) Errors to be added to CrIS 6x6 observations
- 2) Calibration:
 - Statistics within 20%, issues with microwave mid tropospheric channels, infrared surface channels and tropopause.
 - Correlated errors
 - GPSRO error model
- 3) Observations simulation:
 - Conventional data
 - CrIS

Comparison of CrIS simulation with different spatial resolution

CrIS

CriS 3x3 @ 14km

General deficiencies

1) Nature run

- Missing small scale resolvable features
- Cloud bias
- 2) GSI thinning
 - One observation location per thinning box.

Impact of different thinning resolution

Impact of different thinning resolution

Conclusion

- Forecast performance using higher spatial resolution CrIS observations
- A global OSSE system has been developed at CIMSS in coordination with NOAA OSSE team.
- Slight positive impact for bias, overall neutral results
- OSSE Deficiencies simulation of observations, calibration and noise estimation for increased resolution CrIS.
- General Deficiencies nature run and GSI thinning
- Better results expected with improvements in OSSE deficiencies .

Under the support from JPSS Program Office, a global OSSE framework is developed, dedicated to support future JPSS impact studies.

Acknowledgements

We wish to thank:

- NASA GMAO for providing the Nature Run.
- Nigel Atkinson (UK Met Office) and Psacal Brunel (Meteo France) for providing information/test code for the modeling of unsteady non-zero yaw angles of METOP-A/B
- Radio Occultation Meteorology SAF for providing the Radio Occultation Processing Package as well as _ /technical support on the software usage.
- Sean Casey, Hongli Wang and Michiko Masutan for sharing their experience and providing various ancillary files needed by GFS.
- Szuchia Moeller, Nick Bearson and Derrick Herndon for post processing ATOVS data for orbit simulation comparison.
- Ron Errico for his advice on noise addition to simulated observations. —
- Erik Olson for helping with computer resources for simulation of satellite radiances on SSEC Science — Cluster.
- Sharon Nebuda for helping with the NCEP verifying package. _
- NOAA/NESDIS. The experiments were run on the Supercomputer for Satellite Simulations and data assimilation Studies (S4) located at the University of Wisconsin– Madison