Why observe temperature, water vapor, and cloud structures with high-spectral-resolution infrared observations at 1-km horizontal scales?

Brian H. Kahn and Evan Fishbein

Jet Propulsion Laboratory, California Institute of Technology

The 20th International TOVS Study Conference Lake Geneva, WI, USA November 2nd, 2015

Copyright 2015 California Institute of Technology. Government sponsorship acknowledged.

What this talk is not about

Vertical resolution

Temporal resolution

Spatial coverage

Sampling in thick/uniform clouds/precipitation

"Value tradeoffs" among these topics and with spatial resolution

Dependence of spatial variability on cloud regime

A large diversity of T structures Scales of variability dependent on cloud regime

Kinetic energy power spectra in NICAM

Break from roughly –3 to –5/3 in mesoscale range Diffusive behavior at smallest scales

Terasaki et al. (2009), SOLA

Even larger variability of q compared to T Scales of variability often inversely related to T

A large diversity of T structures Scales of variability dependent on cloud regime

Even larger variability of q compared to T Scales of variability often inversely related to T

A brief focus on trade Cu regime

Greatest AIRS (IASI? CrIS?) yield in low lat oceans

Very high skill in trade cumulus Cloud regime very important for cloud-climate feedback

Yue et al., 2011, J. Geophys. Res.

JPL-LES near Barbados during RICO campaign

q in PBL highly variable at scales < 1 km Domain size very similar to AIRS, CrIS, and IASI FOV

Some key issues (horizontal resolution)

<u>Climate/NWP model evaluation/parameterization</u>

Confronting a new generation of high spatial resolution models with low spatial resolution satellite soundings

Scale-dependence of pdfs related to cloud regime, altitude, latitude, etc.

NWP model data assimilation

"Hole hunting" more successful at fine spatial resolution

High value per pixel in cloudy scenes within large horizontal T/q gradients

Representation error of q (regime, latitude, height dependence) (c.f., Hyoung-Wook Chun talk Thursday)

CRM + parameterization for BOMEX

Variance depends on parameterization (CLUBB) and resolution of CRM Total water (vapor, cloud, precip)

Larson et al., 2012, Mon. Wea. Rev.

Small-scale variance and critical RH in climate models: Substantial regime dependence

Lower critical RH suggests larger variance of T and q

Quaas (2012), J. Geophys. Res.

Comparing AIRS and model variance

Scaling exponents & breaks depend on altitude

Kahn and Teixeira (2009), J. Climate

Mesoscale "break" in AIRS T apparent but negligible for q

Kahn and Teixeira (2009), J. Climate

Models with data assimilation more comparable to AIRS

Kahn et al. (2011), J. Atmos. Sci.

"Free-running" models not as comparable to AIRS

Kahn et al. (2011), J. Atmos. Sci.

Can we use current 1-km CWV observations to address scaling?

Ambiguity between CWV and height-resolved q

Existing 1-km resolution CWV observations <u>might</u> fall short on this issue Scaling of CWV resembles T, height-resolved q close to -2

Kahn et al. (2011), J. Atmos. Sci.

Scaling of q_t approximately -2 at all scales

Simulations based on trade cumulus regime (RICO) Averaged over height (column)

Schemann et al. (2013), J. Atmos. Sci.

Height-dependent scale break in q_v near 5–10 km

VOCALS-REx aircraft observations within/above stratocumulus

Kahn et al. (2011), J. Atmos. Sci.

What about clouds?

Scale dependence of cloud number, coverage, and reflectance sensitive to spatial scale

contribution from larger clouds

1.0

0.8

0.6

0.4

0.2

0.0

0.1

cloud length, L [km]

Cloud chord length for which larger clouds contribute 50% to cloud cover

Wood and Field (2011), J. Climate

<u>Scale Break at 0.5 km</u> in Sc with Landsat's Thematic Mapper (TM) Data

Cahalan and Snider (1989), Remote. Sens. Env.

What about the future?

CubeSat Infrared Atmospheric Sounder (CIRAS) For NASA InVEST PI: Tom Pagano (JPL) Sponsor: NASA ESTO

CIRAS Mission

- Demonstrate Key Technologies needed for Infrared Instruments on CubeSats
- Demonstrate fidelity of Hyperspectral Mid IR radiance measurements to retrieve Temperature and Water Vapor Profiles
- Fill Coverage Gaps and Improve Timeliness of Operational IR Sounders
- TRL in: 5-6, TRL out: 7
- Build: 2016, 2017. Launch 2018 (TBD)

Parameter	CIRAS
Spatial	
Orbit Altitude	600-850 km
Scan Range	0.84° - 57°
Horizontal Res'n	1.6 km - 13.5 km
Spectral	
Method	Grating
Band 1	4.78-5.09 µm
Res'n / Sampling	0.5 / 0.2 cm ⁻¹
Total Channels	625
Radiometric	
NEdT (@250K)	<0.25 K
Resources	
Size	6U Cubesat
Mass	8.5
Power	37.5
Data Rate	2 Mbps

© 2015 California Institute of Technology. Government sponsorship acknowledged. *Patent Pending CIRAS will significantly reduce the cost of atmospheric sounding in the infrared and enable improved timeliness through constellations

CIRAS Technologies

Micro Pulse Tube Cryocooler (Lockheed Martin)

CIRAS Measurements

Lower Tropospheric Temperature Profiles

CIRAS

- Lower Tropospheric Water Vapor Profiles
- Goal: Experimental Demonstration of 3D Winds

JPL GRISM

JPL HOT-BIRD Detector

