

IASING science data processing overview

<u>E. Péquignot¹</u>, B. Tournier ², J. Donnadille ², C. Standfuss ², H. Makhmara¹, A. Deschamps¹, F. Bernard¹, E. Baldit¹, S. Guibert¹, S. Rousseau¹, F. Bermudo¹, P-L. Georgy³, J-F. Pasquier³

¹Centre National d'Etudes Spatiales (Toulouse, France) ²Noveltis (Labège, France) ³Airbus Defense and Space (Toulouse, France)

Introduction

- IASI-NG instrument measures interferogram (not spectrum !)
- Interferogram = Fourier Transform (Spectrum)
- Users work with L1C spectrum
- (+ additional information like flags, cloud fraction,....)
- L1C spectrum
 - fully calibrated (spectral and radiometry)
 - a unique ISRF for all channels of all spectra
 - geo-localized
 - performance requirement : Radiometry = IASI /

2, Spectral = IASI/2, geometry = IASI

On-board processing objectives

- As long as interferogram acquisition and sampling is done properly (Shannon criteria respected and anti-aliasing filter), all the meaningful information is contained in $[0,2v_s]$, where v_s is the wavenumber associated to the sampling frequency ($2v_s$ ~ 7820 cm⁻¹ = 1.2788 µm)
- The logic of the design becomes then more obvious
 - Preserve the information content by keeping the Fourier transform reversible in the useful spectral band and with respect to imperfections we may want to correct on ground
 - Be compliant with computation time and telemetry data rate.
 - The data flow is compressed from 200 Mb/s to 6 Mb/s !

On-board processing of science data

Space segment output

Grey: Atmospheric input spectrum (Opd_{Max} = 4.2 cm, SRF = Cardinal sine) Blue: L0 spectrum space segment output (real part, Opd_{Max} = 4.2 cm, SRF = Nominal instrument, Background at 80 K)

- The field compensation within the interferometer is compulsory in order to achieve NedT and spectral resolution requirements
- This field compensation introduces a large chromatic effect (up to 21 cm⁻¹ @645cm⁻¹)
- This is a new feature with respect to IASI first generation
- It is corrected by L1 processing

- Provide atmospheric spectra fully calibrated (spectral and radiometry) and geolocalized
- A unique ISRF for all channels of every spectrum
 - The objective is to facilitate spectra simulation by RT models (user friendly approach)
- To provide additional geophysical characteristics of the scene (at pixel and subpixel scale) in order to help with the exploitation of IASI-NG spectra.
- Make the processing in near real time (more than 1 million spectra per day !)

Pre-processing is mainly done in the interferogram space

Operations: Spike Correction (TBC), Direct Fourier Transform, Interferogram Resampling (centered on ZPD), Interferogram Apodisation and Inverse Fourier Transform

LO and Apodized Raw spectra: reduced to the useful spectral band and complex, intermediate interferograms: real

On-ground processing: spectral and radiometric calibration

Main-processing is done in the spectrum space

Self Apodisation Functions: complex

Equalized Spectra: complex

Level 1C Spectra:

Real Part disseminated to the users

Imaginary Part delivered to the Technical Expertise Center (TBC)

Instrument removal principle (spectral calibration, ISRF deconvolution, L1C apodisation)

Illustration for a monochromatic wave Instrument input Monochromatic wave at 645 cm⁻¹ V0 = 645 cm - 1Instrument output vk= 645 cm⁻¹ V'0= 624.xx cm⁻¹ Left: Estimated Instrument Transfer Function **Before SAF removal** After SAF removal (SAF) at 645 cm⁻¹ Right: Final Level 1C Instrument Transfer modul modul Function (equalized and apodised) Here we are in the interferogram space. Easier phase phase for deconvolution / convolution Level 1C output Final Level 1C spectrum sample at 645 cm⁻¹ vk= 645 cm⁻¹

ISRF-EM overview

The quality of the ISRF removal relies on an accurate ISRF model + onground and in-flight characterisations of input parameters of this model

105

Enhance off-axis metrology (new with respect to IASI 1st generation)

The interferometer baseline design includes in addition to the on-axis metrology four additional laser beams

- The on-axis beam z₀ provides the nominal OPD including µvibration effects
- The difference between z₂&z₄ provides the tilt around u
- The difference between z₁&z₃ provides the tilt around v
- The mean value of z_1 , z_2 , z_3 and z_4 compared to z_0 provides the air/glass ratio
- The difference between the mean value of $z_2 \& z_4$ and the mean value of $z_1 \& z_3$ provides the prism gap

Fabry-Perot device (new with respect to IASI 1st generation)

• The interferometer baseline design includes a FP device to monitor in-flight IASI-NG spectral calibration (mainly KBr refractive index in the whole spectral domain)

 Signal = reflection of the hot parts of the instrument (including field effect integration and SRF convolution)

FPI level 1c spectra in the spectral range 1980-2020 cm⁻¹ for detectors 4, 7, 10, and 13 ITSC-XX: Lake Geneva, Wisconsin, USA, 28 October - 3 November 2015

- Main advantages
- it creates a regular spectral pattern that is easy to model
- additional calibration device with respect to IASI, where atmospheric spectral signatures are the only calibration source.

Black: Atmospheric input spectrum ($Opd_{Max} = 4.2 \text{ cm}$, SRF = Cardinal sine) Red: L1C spectrum L1 processing output (real part, $OPD_{Max} = 4 \text{ cm}$, SRF = L1C)

25

Space segment output

Grey: Atmospheric input spectrum (Opd_{Max} = 4.2 cm, SRF = Cardinal sine) Blue: L0 spectrum space segment output (real part, Opd_{Max} = 4.2 cm, SRF = Nominal instrument, Background at 80 K)

Conclusions

- Main principles of science data processing and corresponding in-flight auxiliary instrument devices have been defined
 - » IASING has been imagined as a system including an instrument, an on-board and on-ground processing. L1C performances relies on the complementarity and mastering of these 3 components.
 - » New devices on-board to ensure the knowledge of instrument state : Fabry Perot, 5 beams laser metrology, Wave Font Sensor
 - » New capabilities for on-ground correction of instrumental artefact
 - » We put in the science telemetry both imaginary and real parts of the spectra.
 - Additional datarate to monitor out of band signal (spike & µvibration correction, Non Linearity monitoring)
 - » Today a changing phase black body could not be accommodated within the instrument which means that there is no direct in-flight monitoring of absolute radiometric calibration. However a SI traceability of BB temperature has been asked during the development.
- On-board processing prototype is available
- On-ground processing prototype will be available by mid of 2017
- A scientific validation of algorithms has started (see Adrien's poster #14p.03) based on simulated test orbits provided by EUMETSAT