IASI-NG Level 1 processing

How to estimate the instrument spectral response function in real-time ?

<u>A. Deschamps¹</u>, C. Luitot¹, E. Baldit¹, A. Penquer¹, L. Watson², N. Coutand²

¹ CNES, ² Noveltis

IASI – NG level 1 processing

From IASI to IASI-NG: innovations and new challenges

Overview of the IASI-NG Level1 processing

The ISRF – Estimation Model

System performance budget

IASI-NG Level 1 main characteristics

Main figures	IASI	IASI-NG
Radiometric Resolution (NeDT)		IASI/2
Spectral resolution	0.5 cm ⁻¹	IASI/2 (0.25 cm ⁻¹ @L1C)
Absolute Radiometric Calibration	< 0,5K	IASI/2 (<0,25K@280K)
Spectral bands	3 bands	4 bands
Number of sounder pixels per acquisition	4 pixels	16 pixels
Ground Pixel diameter	12 km	12 km
Ground sampling	25 km	25 km

From IASI to IASI-NG: innovations and new challenges

- IASI vs IASI-NG? •
 - With great performance comes great complexity \rightarrow

- 4 optical components
- 1 moving corner cube
- nearly achromatic / all reflective design
- 1 laser trigs the acquisition

F. Henault, C. Buil and al. - spaceborn infrared interferometer of the IASI instrument. Proc SPIE 3437, Infrared Spaceborn Remote Sensing VI. 18/11/1998

IASI-NG interferometer

- 6 optical components ٠
- 4 moving prisms, simultaneously
- chromatic and refractive design ٠
- 1 laser trigs the acquisition, 4 additionnal lasers for opd estimation ٠

plates

internal

nrisme

Mirror

cnes .

. .

• cnes • • • •

. . .

- IASI-NG ISRF estimation principle
 - ISRF is estimated <u>for every set</u> of 16x4 acquisitions

estimating the ISRF = knowing the science opd

Airbus D&S shows that the opd for every wavelength in the science band can be approximated by a linear combination of the 5 metrologies opd :

$$opd(\sigma) = \left(A_{cal}(\sigma) - C_0(\sigma, Z_0)\right) \cdot Z_0 + \sum_{i=1}^4 C_i(\sigma, Z_0) \cdot Z_i + OFFSET(\sigma, Z_0)$$

- $\mathbf{Z}_{i=1..4}$: metrologies opd
- Z₀ : reference metrology opd
- $C_{i=0..5}$: opd coefficients

- IASI-NG ISRF estimation principle
 - ISRF-Estimation Model parameters Coefficients

$$opd(\sigma) = \left(\frac{A_{cal}(\sigma)}{-C_0(\sigma, Z_0)}\right) \cdot Z_0 + \sum_{i=1}^{4} \frac{C_i(\sigma, Z_0)}{-C_i(\sigma, Z_0)} \cdot Z_i + \frac{OFFSET(\sigma, Z_0)}{-C_i(\sigma,$$

 $\mathbf{Z}_{i=1..4}$: metrologies opd

They are a combination of :

- Z₀ : reference metrology opd
- $C_{i=0..5}$: opd coefficients

Computed coefficients

- Using a numerical model of the interferometer
- Parameters of the model can be updated in-orbit using WFS

8 © cnes

- **IASI-NG ISRF estimation principle** •
 - ISRF-Estimation Model parameters Coefficients

$$opd(\sigma) = \left(\frac{A_{cal}(\sigma)}{-C_0(\sigma, Z_0)}\right) \cdot Z_0 + \sum_{i=1}^4 \frac{C_i(\sigma, Z_0)}{-C_i(\sigma, Z_0)} \cdot Z_i + \frac{OFFSET(\sigma, Z_0)}{-C_i(\sigma, Z_$$

 $\begin{array}{c} Z_{i=1..4} \\ Z_0 \end{array}$: metrologies opd

They are a combination of :

- : reference metrology opd
- $C_{i=0..5}$: opd coefficients

Measured coefficient

- On-ground spectral shift (first guess) •
- In-orbit determination using ٠ dedicated acquisitions sequences (atmospheric spectra correlation + FPI)

- IASI-NG ISRF estimation principle
 - ISRF-Estimation Model parameters Coefficients A_{cal}

The A_{cal} coefficient is related to the spectral shift $\Delta\sigma$ throught the simple relation :

$$A_{cal}(\sigma) = \frac{\Delta\sigma}{\sigma}$$

1- $A_{cal}(\sigma)$ values are computed for few wavenumbers (anchor points) across the IASI-NG band using correlation between observed and modeled spectra.

- IASI-NG ISRF estimation principle
 - ISRF-Estimation Model parameters Coefficients A_{cal}

FPI plates (ZnSe) Winlight optics

The A_{cal} coefficient is related to the spectral shift $\Delta\sigma$ throught the simple relation :

How on board calibrations will allow high level of performance during IASI-NG Mission E. Baldit and al – Poster session – Joint EUMETSAT/AMS/NOAA conf. 2019 (Boston)

$$A_{cal}(\sigma) = \frac{\Delta\sigma}{\sigma}$$

11) © cnes

- IASI-NG ISRF estimation performances
 - Preliminary assessments of ISRF estimation model are very promising :

Knowing the science opd = estimating the ISRF

Without defects, the opd estimation is better than few tenth of nanometers ($\sim 1/1000$ OPD sampling)

- IASI-NG ISRF estimation performances
 - Preliminary assessments of ISRF estimation model are very promising :

Knowing the science opd = estimating the ISRF

opd variations induced by kinematical defects are also well corrected

Sensitivity of the opd error - translation defect

Sensitivity of the opd error below :

- **3nm/µm of translation** for every component / every wavenumbers
- Movement of 1µm of the compensating plate corresponds to a worst case

6 optical components x 3 transations / rotations

- The current budget of system performances shows very encouraging results in terms of
 - ✓ Geometric performances
 - Spectral performances
 - Radiometric performances

Thank you ...

5th IASI Conference, 20-24 April 2020, Evian (France)

16 © cnes

Back-up slides

From IASI to IASI-NG: innovations and new challenges

Applications are the same:

cnes ·

 H_20

 To deal with the stronger requirements in terms of performances, a new instrumental concept has been proposed:

- The Mertz interferometer allows a field compensation (self-apodisation correction)
- Field compensation is achieved by introducing optics with correct optical index
- A single 'dual swing" mechanism translates two pairs of prisms proportionally and creates simultaneously the OPD change and the self-apodisation compensation
- The level 1 processing has been modified consequently, especially to estimate the Instrument Spectral Response Function (ISRF)

Reflected

- Why estimate the instrument spectral response function (ISRF) ?
 - \rightarrow The impact of the instrument on measured spectra

ISRF = response of the instrument to a spectral dirac

input dirac

FM1 IFM Model (courtesy Airbus)

ISRF

The ISRF – Estimation Model

- Why estimate the instrument spectral response function (ISRF) ?
 - \rightarrow The impact of the instrument on measured spectra

ISRF = response of the instrument to a spectral dirac

input dirac

FM1 IFM Model (courtesy Airbus)

ISRF

The ISRF – Estimation Model

number (cm⁻

2500

2000

wavenumber [cm⁻¹]

- Why estimate the instrument spectral response function (ISRF) ?
 - \rightarrow The impact of the instrument on measured spectra

ISRF = response of the instrument to a spectral dirac

input spectrum

1500

1000

0.0010

0.0008

0.0006

0.0004

0.0002

0.0000

- Why estimate the instrument spectral response function (ISRF) ?
 - \rightarrow The impact of the instrument on measured spectra

ISRF = response of the instrument to a spectral dirac

- IASI-NG ISRF defects
 - → Instrument impact on ISRF can be separated into 2 main categories :
 - > Defects induce by the gap between the realized instrument and the ideal ones :
 - optics realization (MSE,...),
 - alignments,
 - cinematic perturbations during the stroke, ...
 - ...
 - > Defects induce even if the instrument were ideal :
 - variable spectral shift due to the opd chromaticity

(~20cm⁻¹@645 and ~12cm⁻¹@2760cm⁻¹)

© cnes

- IASI-NG ISRF estimation performances
 - Preliminary assessments of ISRF estimation model are very promising :

spectral shift estimation is below the **1.10**⁻⁶ requirements when considering around 40 tropical (night/sea) atmospheric spectra (correlated with ref. mean tropical atmos.)

- IASI-NG ISRF estimation principle
 - ISRF-Estimation Model parameters Coefficients

$$opd(\sigma) = \left(\frac{A_{cal}(\sigma)}{-C_0(\sigma, Z_0)}\right) \cdot Z_0 + \sum_{i=1}^4 \frac{C_i(\sigma, Z_0)}{-C_i(\sigma, Z_0)} \cdot Z_i + \frac{OFFSET(\sigma, Z_0)}{-C_i(\sigma, Z_$$

 $Z_{i=0..4}$: metrologies opd $Z_5 = 1$ $C_{i=0..5}$: opd coefficients

Measured coefficient :

(atmospheric spectra correlation +

They are a combination of :

Computed coefficients

- Using a numerical model of the interferometer
- Parameters of the model can be updated in-orbit using WFS

• Synthesis of the current performances budget (compared to specifications at mission level) for the main requirements

Description	Specified value / calculated value	Status
ISRF shift knowledge	1E10-6 / 1E10-6	compliant
ISRF shape error index	0.25% / 0.27% (parasitic contribution)	Marginally NC
Interpixel ISRF stability	1E10-4 / 3.3E10-5	compliant
Radiometric noise	See previous figure	compliant
Absolute radiometric calibration	0.25 K (O) and 0.5 K (T) / 0.24K	compliant
PSF uniformity knowledge	+/- 10 % / 14%	compliant
PSF characterization	-	No budget available
Spatial resolution	11.5 +/- 0.5 km / 11.8km	compliant
Ground sampling	3mrad / 3.2mrad	NC in worst case (compliant in typical case)
Pointing knowledge	+/- 3 mrad / 0.9mrad	compliant
Pointing accuracy	+/- 3 mrad / 0.91mrad	compliant
Pointing stability	0.1 mrad / 0.062 mrad	compliant
Sounder geolocation	1km / 949 m	compliant
Geolocation in degraded case	5km / 1108 m	compliant