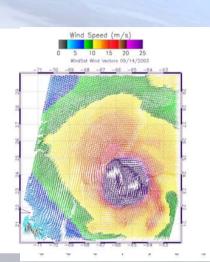
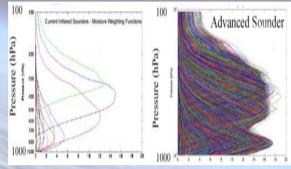
The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Sensor Suite

Hal J. Bloom, NOAA-NPOESS Payload Division Chief

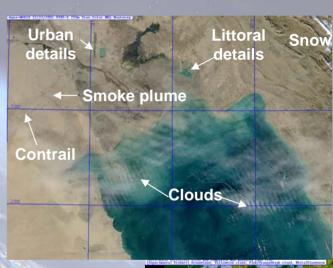
*National Polar-orbiting Operational Environmental Satellite System

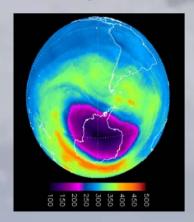



NPOESS Still Brings Phenomenal New Capabilities to Users

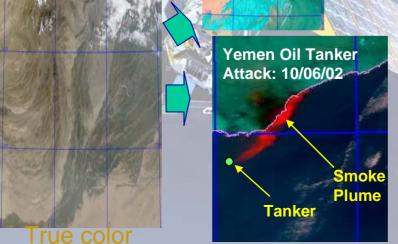
Syns-Mc018, 12/21/2002, 1000-2, the Dust MRL Hunterey work

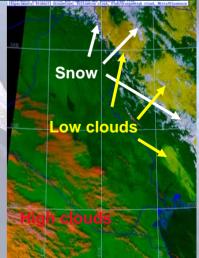
Dust cloud


over sand



Soundings-CrIMSS


NPOESS
VIIRS
[MODIS Sim.]
J+ VIS/NIR bands
12 IR bands

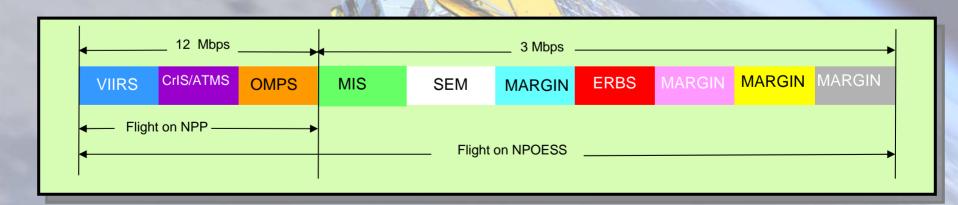


Wind Speed-MIS

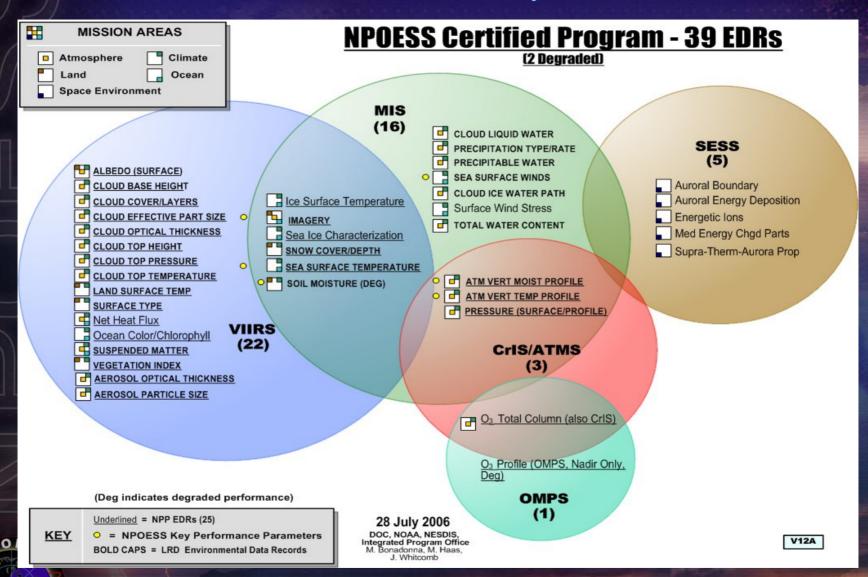
Ozone-OMPS

NPOESS/NPP Data Products and date rate capability still sized for growth

Raw Data Records (RDRs)

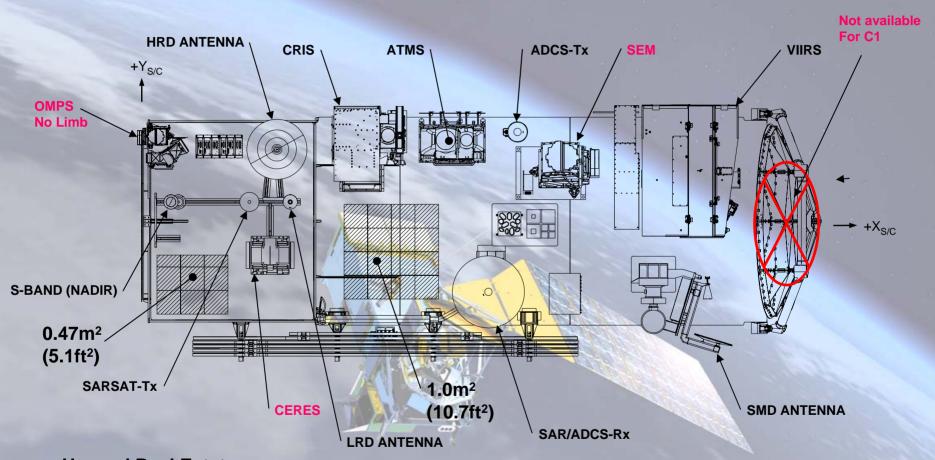

- Similar to Level 1A for CEOS/NASA.
- ~ 150 giga bytes per day (similar to Terra or Aqua).

Sensor Data Records (SDRs)


Similar to CEOS/NASA Level1B

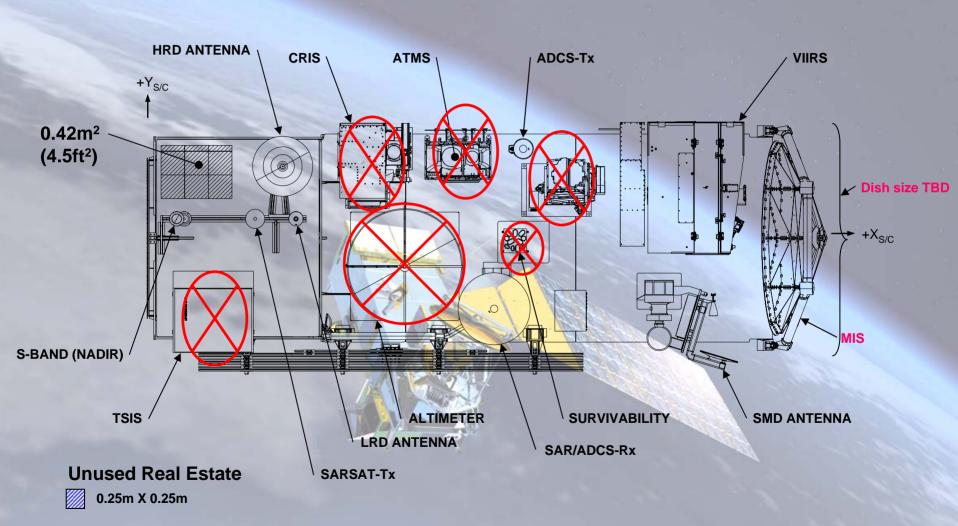
Environmental Data Records (EDRs)

- Similar to CEOS/NASA
 Level 2.
- NPP Provides 25 of 55
 NPOESS EDRs.

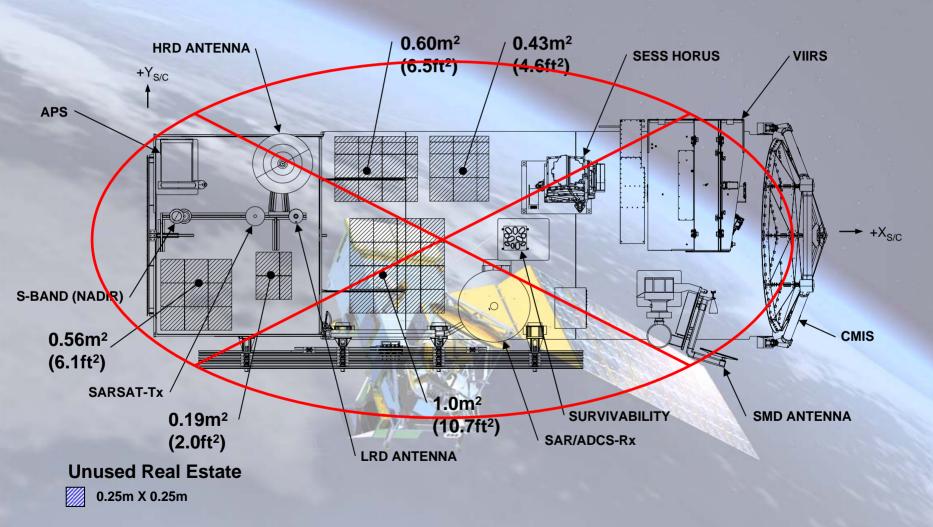

International TOVS Study Conference -15

*National Polar-orbiting Operational Environmental Satellite System

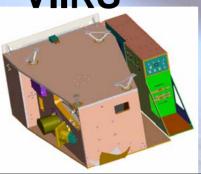
1330 CONFIGURATION for NPOESS C1 Still provides Soundings, Imagery, Surface, Space Environment, and Climate monitoring Capability

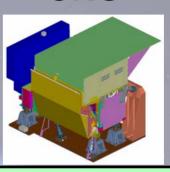

Unused Real Estate

0.25m X 0.25m


1730 CONFIGURATION

STOWED CONFIGURATION


Reliance on METOP allows us to Remove the 2130 Plane


Payload Overview

(1 of 2)

VIIRS

CrIS

- Purpose: Land, ocean, atmospheric parameters at high temporal resolution
- <u>Precursors:</u> AVHRR, OLS, MODIS, SeaWiFS
- Developer: Raytheon
- Approach: Multi-spectral scanning radiometer, 3000 km swath width
- **TRL**: 6.5

- Purpose: Temperature and moisture profiles at high temporal resolution
- Precursors: HIRS, AIRS, IASI
- Developer: ITT
- Approach: Michelson interferometer, 2300 km swath width. Co-registered with ATMS
- TRL: **6.5**

NPP Overview - Instruments



(2 of 2)

ATMS

OMPS

- Purpose: Temperature and moisture profiles at high temporal resolution
- Precursors: AMSU, MHS
- Developer: Northrop Grumman
- Approach: Scanning passive microwave radiometer, 2300 km swath width. Co-registered with CrlS.
- TRL: **6.5**

- Purpose: Monitors total column, vertical ozone profile
- Precursors: TOMS, SBUV, GOME, OSIRIS, SCHIAMACHY, OMI
- Developer: Ball
- Approach: Nadir and limb push broom CCD spectrometers, 2600 km swath width
- **TRL**: 6.5

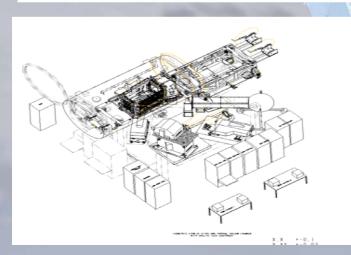
Payload Overview- 3 NPP instrument in various stages of Test

VIIRS EDU Finished TVAC

Nadir Sensor in TVAC Chamber (seen from coldplate side)

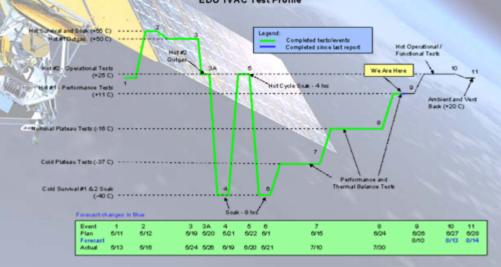
OMPS FU1 Finished TVAC

ATMS Delivered to S/C



VIIRS EDU finished TVAC and in Data Analysis phase

06-02-50



EDU TVAC Test Plans and Status"

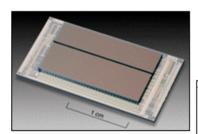
				Cold Plateau		Nominal Plateau			Hot Performance Plateau			Hot Operational Plateau			
				Voltage		Voltage			Voltage			Voltage			
	ID	Test Procedure	Part	29V	22V	347	29V	22V	34V	28 V	22V	34V	28 V	22V	347
	9-2	Focal Plane Integration / Video Throughput/	1.1		Х										
		Electronic Wareform	1.2		X										
	Si-5	Electronic Self Test	1.1	X			X						X.		
	946	Noise	1,1	X	Х	X	X						X	X	X
			1.2		X	X	X						X.	Х.	X
			1.3	X	X	X	X.						X	X	X
			2	X	X	X	X						X	ii X	X
	FP-4	Spectral Band Registration	-1	X			X								
			2	X			X								
	FP-6	MTF and HSR	23	X			X			X					
	FP-7	Mechanical Functions	- 1		X										X
			2		Х		X								X
	FP-G	Sensor Modes	- 1	X	X	X							X.	X.	X
			2	X	Х	X							X.	X	Х
	FR-15	Rel. Spectral Response - In Band	2				X								
	FP-16	Rel. Spectral Response - Out of Band	2				X								
	RC-1	Radiometric Resp. & Sensitirity Ambient	4		X		optional			optional					
A. C.	RC-2	Reflective Band Radiometric Resp & Sens.	1	X	X	X	X			X	X	X			
			2	X	Х		X			X		X			
	RC-3	Radiometric Response Stability	- 1				X			Х					
	RC-5	Emissive Band, Radometric Resp.& Sens	- 1	X	X	X	X				Х	X			
			2	X			X			X					
	TV	TV- Thermal Corbol Test- Outgas	00											X	
		TV - Thermal Control Test - Thermal Stability	TB	X			X								
-	100	Test Completed test deleted per agreement with our lower community 6 29-06													
		THE STORY WALL									- and a				

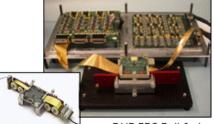
EDU TVAC Test Profile

Test matrix updated for consistency with TV procedure 7-3-06

VIIRS Flight Hardware making good progress

Hardware Photos

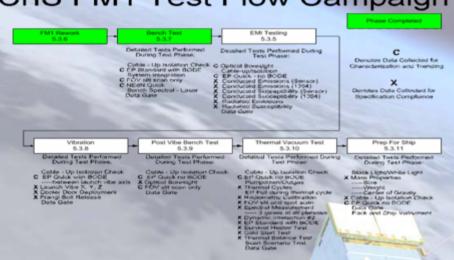

Ground Support Equipment


On-Board Blackbody


Integration & Test

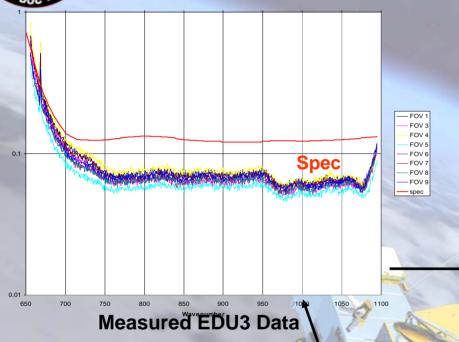
LWIR Sensor Chip Assembly

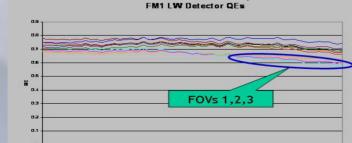
DNB FPS Pathfinder

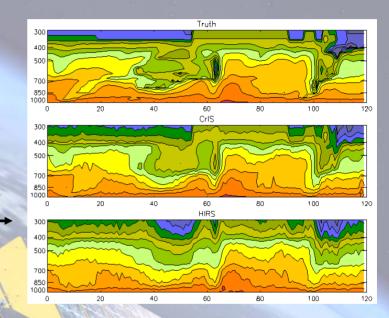


CrIS Is integrated and has gone through Bench, EMI and in TVAC Testing

CrIS FM1 Test Flow Campaign





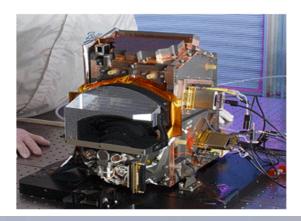


CrIS is meeting performance with low NEdN

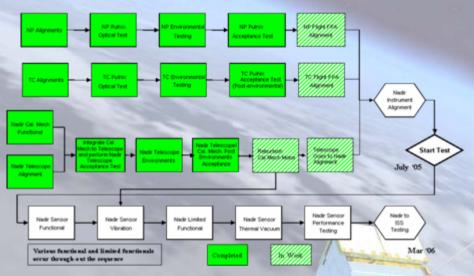
OMPS in Acceptance Testing and ahead of schedule

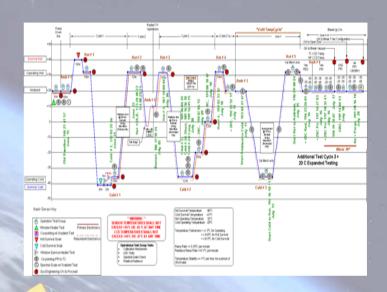
OMPS Cleanroom with EGSE and Nadir Sensor (far left)

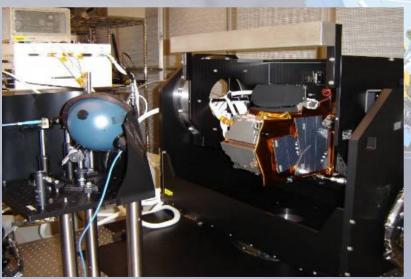
Nadir Sensor in TVAC Chamber (seen from coldplate side)



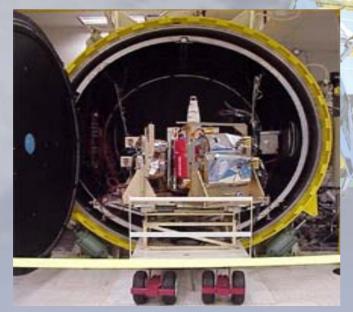
3



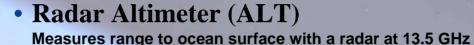

Nadir Sensor on Optical Bench in Cleanroom



OMPS In test data analysis phase



ATMS is delivered and integrated on the NPP Spacecraft

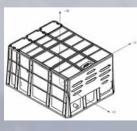


NPOESS Retains the growth and accommodation potential to bring Leveraged Sensor back

- Corrects for ionosphere with 5.3 GHz radar
- Corrects for atmosphere with CMIS water vapor measurements
- Precise orbit determination with GPS

Total Solar Irradiance Sensor (TSIS)

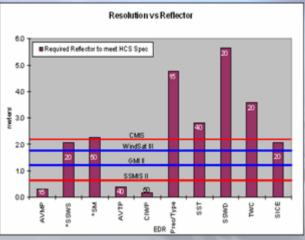
- Two sensors for total irradiance (TIM) & spectral irradiance (SIM)
 - TIM measures total solar irradiance
 - SIM measures spectral irradiance 200 to 2000 nm
- Pointing platform and sensor suite to be provided by CU LASP

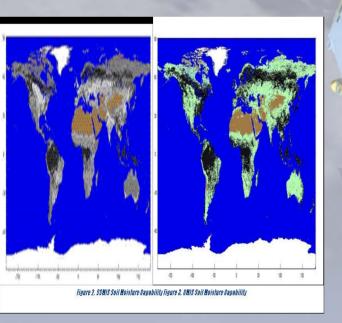

Aerosol Polarimetry Sensor (APS)

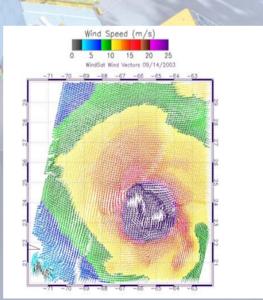
Aerosol characterizations of size, single scattering albedo, aerosol refractive index, aerosol phase function

- Multispectral (broad, 0.4 to 2.25 μm)
- Multiangular (175 angles)
- Polarization (all states)

Additional Space Environment Sensor Suite (SESS)


UV disk imager (BATC), and thermal plasma sensors




NPOESS Studying a Capable Microwave Imager for Implementation on NPOESS C2 (1730)

Exploring the concept based on Heritage Designs and planned systems

- The expectation is to meet heritage performance while meeting key performance parameters
- Produce a system that is available for 2nd NPOESS launch
- How to handle Soundings?

	X-Track	Conical
Radiometric Calibration		
Horizontal Cell Size		
Polarization		
Imagery		
Slant Path		
Weighting Function		
Heritage Application	8	
	Children .	

- Post NPOESS Restructure Still brings enhanced capability for NPOESS and NPP
- NPP still provides an opportunity for early NPOESS data utilization and sensor risk reduction
- All four NPP sensors are either in test or post test analysis phase
- Preparations are being made for PFM and or EDU accommodation on the NPP spacecraft for early risk reduction testing
- There is no redesign of the NPP or NPOESS spacecrafts: thus allowing accommodation of de-manifested sensors
- NPOESS is actively studying conical microwave concepts to fly post NPOESS C1