22nd International TOVS Study Conference

Impact of the mid-loop for satellite radiance on a hybrid data assimilation skill

Ji-Hyun Ha^{1,2}, <u>Hyo-Jong Song</u>^{1,3*}, and Hyoung-Wook Chun¹

¹Korea Institute of Atmospheric Prediction Systems ²Korean Meteorological Administration ³Myongji University

*Correspondence to hjsong@mju.ac.kr

5 Nov. 2019

Contents

- Korean Integrated Model developed by KIAPS
- 4D Ensemble Variational Assimilation
- Multi-scale mid-loop
- Iterative Quality Control
- Experimental setting and Results
- Remarks

Korean Integrated Model by KIAPS

Asia-Pac. J. Atmos. Sci., 54(s), 267-292, 2018 DOI:10.1007/s13143-018-0028-9 pISSN 1976-7633 / eISSN 1976-7951

The Korean Integrated Model (KIM) System for Global Weather Forecasting

Song-You Hong, Young Cheol Kwon, Tae-Hun Kim, Jung-Eun Esther Kim, Suk-Jin Choi, In-Hyuk Kwon, Junghan Kim, Eun-Hee Lee, Rae-Seol Park, and Dong-Il Kim

Korea Institute of Atmospheric Prediction Systems (KIAPS), Seoul, Korea

Korean Integrated Model by KIAPS

YEAR	2011	2012	2013	2014	2015	2016	2017	2018	2019
Overview	Phase I : Basic research & hydrostatic model setup			Phase II : Development of KIM with data assimilation & semi-real time evaluation			Phase III : Evaluation of KIM by forecasters & feedback for operational deployment		
Milestone (KIM version)	KIM 1.0 (HOMME-based hydrostat dynamics/physics system set			tic tup)	KIM 2. (nc W	0~2.5 onhydrostati vith KIM phy	KIM 3.0 KIM 3.1~3.5 c dynamic core rsics package)		
DA System	Idealized tests with pse observations for KIM			eudo- I DA		3DVar LETKF	4DEnVar		
Resolution	Idealized tests and case expe for KIM model (10~100 km			eriments m, L50)		25 km L50	12 km L50	12 km L91	10 km L91
Resources (cpu cores)	KIAPS computer syste 2,240			tem		KMA 2,000	KMA 10,000	KMA 20,000	(TBD)

Korean Integrated Model by KIAPS

4D Ensemble Variational Assimilation - HybDA

 Every mid-loop, brightness temperature and Jacobian of RTTOV are re-calculated without rerunning of the NWP model.

Song, H. J., Ha, J. H., Kwon, I. H., Kim, J., & Kwun, J. (2018). Multiresolution hybrid data assimilation core on a cubed-sphere grid (HybDA). *Asia-Pacific Journal of Atmospheric Sciences*, *54*(1), 337-350.

Procedures in HybDA

Multi-resolution minimization

 Resolution of minimization also increases from 3600 km to 900 km in the way of 1/2*localization scale.

Song, H.-J. Existence of multiple scales in uncertainty of numerical weather prediction. *Sci Rep* **9**, 15672 (2019) doi:10.1038/s41598-019-52157-x

Impact of multi-scale localization

- single experiment: fine resolution
- multi-scale experiment: large scale increment added

Song, H.-J. Existence of multiple scales in uncertainty of numerical weather prediction. *Sci Rep* **9**, 15672 (2019) doi:10.1038/s41598-019-52157-x

Iterative Quality Control (iQC)

of iasi observations

Experimental setting

Experiment name	Configuration
SL	Single loop (no mid-loop) with final resolution
ML_noqc	4 times mid-loop, multiple resolutions of minimization each mid-loop, RTTOV and ROPP recalculated (mixed feature)
ML	The same as mid-loop_noqc with iterative QC

- Experimental period: 1 12 July 2018 (spin-up: 22-30 June 2018)
- NWP Model: Korean Integrated Model Version 3.3b
- Data assimilation scheme: Hybrid-4D Ensemble Variational Assimilation (HybDA)
- ML_noqc − SL → impact of mid-loop
- ML ML_noqc → impact of iterative QC
- $ML SL \rightarrow impact of mid-loop + iterative QC$

RMSE (against IFS analysis) of 6h forecast: Temperature

RMSE (against IFS analysis) of 6h forecast: Specific humidity

RMSE (against IFS analysis) of 6h forecast: Zonal wind

• RMSE (against IFS analysis) of 6h forecast: Meridional wind

Region A (60N~80N, 200~400 hPa; improved) averaged

Region B (0~20N, 300 hPa; improved) averaged

Region C (20S ~ 0, 200~400 hPa; degraded) averaged

Q Background error @ 850 hPa (2018.07.10.00 UTC)

Q Analysis increment @ 850 hPa (2018.07.10.00 UTC)

Remarks

- Although mid-loop works well, it tends to make the temperature increment colder in southern tropical upper-troposphere, which is probably related to largerscale increment included in the multi-scale approach.
- For the moisture analysis, it robustly works by suppressing suspicious dry and humid increments, which comes probably from RTTOV recalculation, with the additional aid of the iterative QC.
- These features need to be re-investigated with isolating the effects of RTTOV recalculation de-coupled from multi-scale impact.

Thank you for your attention!