

NPOESS VIIRS: Design, Performance Estimates and Applications

Carl F. Schueler, Shawn W. Miller and Jeffery J. Puschell Raytheon Space and Airborne Systems, Goleta, California Thomas F. Lee , Steven D. Miller, Jeffrey D. Hawkins, F. Joseph Turk and Kim Richardson Naval Research Laboratory, Monterey, California John Kent Science Applications International Corporation, San Diego, California

The 14th International TOVS Study Conference, 25-31 May 2005, Beijing, China

- The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Visible Infrared Imaging Radiometer Suite (VIIRS) will offer dramatic spatial, spectral, and radiometric performance improvements over current operational capabilities
 - •NOAA Advanced Very High Resolution Radiometer (AVHRR) offers 1 km nadir spatial resolution in 5 spectral bands
 - •The Defense Meteorological Satellite Program (DMSP) Operational Line-scanning System (OLS) offers near constant contrast 1.8km day-night cloud imaging and visible and thermal imagery

•VIIRS offers 22 band spectroradiometry comparable to NASA's MODerate-resolution Imaging Spectroradiometer (MODIS).

- •On NPP and NPOESS
- •3000 Km Swath
- Day-night cloud imagery (constant contrast 750 m resolution)
- •4:1 better edge-of-scan spatial resolution than AVHRR or MODIS

NOAA AVRRR Contributions to VIIRS Subpoint Spatial Raytheon Resolution

VIIRS System Provides Excellent Environmental Data Records (EDRs)

Space Technology

IORD/TRD Threshold

VIIRS System Design based on integrated Sensor and Algorithms

- Engineering Development Unit (EDU) approaching integration
- EDR Science Algorithms developed, documented, and publicly released by Raytheon Technical Services Company (RTSC) Information Technology and

IORD/TRD Objective

5 Scientific Services (ITSS)

VIIRS VIS/NIR & IR Bands

NORTHROP GRUMMAN Space Technology

High resolution atmospheric absorption spectrum

05

210 K

300 K

3001

280K

260K

240K

220K

200K

18.0

16.0

Wavelength (nm)						4.0 6.0 8.0 10.0 12 Wavelength (µm		
		Band No.	Wave- length (μm)	Horiz Sam ple Interval (km Downtrack x Crosstrac Nadir End of Sca		Driving EDRs	Radi- ance Range	Ltyp Ttyp
	Silicon PIN Diodes	M 1	0.412	0.742 x 0.259	1.60 x 1.58	Ocean Color Aerosols	Low High	44.9 155
		M 2	0.445	0.742 x 0.259	1.60 x 1.58	Ocean Color Aerosols	Low High	40 146
		М 3	0.488	0.742 x 0.259	1.60 x 1.58	O cean Color A erosols	Low High	32 123
		M 4	0.555	0.742 x 0.259	1.60 x 1.58	Ocean Color Aerosols	Low High	2 1 9 0
		11	0.640	0.371 x 0.387	0.80 x 0.789	lm agery	Single	2 2
		M 5	0.672	0.742 x 0.259	1.60 x 1.58	O cean Color A erosols	Low High	10 68
		M 6	0.746	0.742 x 0.776	1.60 x 1.58	Atmospheric Corr'n	Single	9.6
		12	0.865	0.371 x 0.387	0.80 x 0.789	NDVI	Single	25
		M 7	0.865	0.742 x 0.259	1.60 x 1.58	Ocean Color Aerosols	Low High	6.4 33.4
СС	D	DNB	0.7	0.742 x 0.742	0.742 x 0.742	lm agery	Var.	6.70E·
	PV HgCdTe (HCT)	M 8	1 2 4	0 7 4 2 x 0 7 7 6	1 60 x 1 58	Cloud Particle Size	Single	54
		M 9	1.378	0.742×0.776	1.60 x 1.58	Cirrus/Cloud Cover	Single	6
		13	1.61	0.371 x 0.387	0.80 x 0.789	Binary Snow Map	Single	7.3
		M 1 0	1.61	0.742 x 0.776	1.60 x 1.58	Snow Fraction	Single	7.3
		M 1 1	2.25	0.742 x 0.776	1.60 x 1.58	Clouds	Single	0.12
		14	3.74	0.371 x 0.387	0.80 x 0.789	Im agery Clouds	Single	270
		M 1 2	3.70	0.742 x 0.776	1.60 x 1.58	S S T	Single	270
		M 1 3	4.05	0.742 x 0.259	1.60 x 1.58	SST	Low	300
						Fires	High	380
2	F	M 1 4	8.55	0.742 x 0.776	1.60 x 1.58	Cloud Top Properties	Single	270
	Ö	M 15	10 763	0 7 4 2 x 0 7 7 6	1 60 x 1 58	SST	Single	300

0.80 x 0.789

1.60 x 1.58

Cloud Imagery

SST

Single

Single

15

M 16

11.450

12.013

0.371 x 0.387

0.742 x 0.776

Finer Sampling, Spatial Resolution & Better Sensitivity

Ravtheon

AVHRR VISIBLE SIMULATION

VIIRS VISIBLE SIMULATION

San Diego – MODIS Edge

San Diego – MODIS Nadir

GOES versus MODIS

Quality of Subsectors

VIIRS

-3000 km -

VIIRS value to forecasters multiplied by efficient data delivery!

- 95 % of data delivered within 28 min to central processing stations
- Average delivery time 10.5 min
- Current prototypes using MODIS have latency 2-3 hours

GRUMMAN

Space Technology

Ravtheon

Publicly accessible demonstration of Satellite Products over the continental United States:

- 1.Simulate future NPOESS capabilities in public forum
- 2.Near-realtime display of products, some not previously available (e.g., nighttime visible)

Raytheon

OF

NexSat: 250m City Zooms

NexSat: Dust Storms

NexSat: Aircraft Contrails

NexSat: Fire Detection

NexSat: Cloud/Snow Discrimination

Space Technology

GRUMMAN

- Complex snow/cloud scenes during winter in Southwest Asia
- Difficult to distinguish clouds from snow in single visible and window-infrared channels
- The ability to determine the presence of cloud over a snow field is useful to targeting, surveillance, navigation, etc.

- Purpose: Replicate OLS capability but with updated technology and improvements
- 0.5 -- 0.9 µm broadband visible
- Detectors are aggregated to produce nearconstant resolution
- More detectors aggregated near nadir for high SNR; fewer aggregated near edge for lower SNR

DNB "Constant Contrast"

Three Gains High Medium Low Relative Gain 119,000 477 1

- Improves SNR at low radiances
- All pixels are imaged with all three gains
- Onboard processing selects the most sensitive gain setting without saturation for transmission to the ground
- Goal is "constant contrast" imagery

DMSP (F14) Terminator Image

NORTHROP GRUMMAN

OF

DMSP OLS

Raytheon

NGDC Poster

Raytheon

Full Moon 98% full, 48.1º Elevation

VIIRS Improvement for DNB

DMSP OLS

- 1. 64 Gray shades
- 2. 2.2 km Field of View
- 3. Limited Pixel Expansion
- 4. Numerous Image Artifacts

NPOESS VIIRS

64 X = 4096 Gray shades

0.75 km Field of View

No Pixel Expansion

Artifacts Eliminated

OLS Lightning Detection

31

Near-Realtime Polar Products from NexSat

Raytheon

http://www.nrlmry.navy.mil/nexsat_pages/nexsat_home.html

- VIIRS adds advanced capability not available from MODIS
- NPOESS will truly be a forecaster's system
- Constant-Contrast/Constant-Resolution Data will produce vivid, information-rich images for DNB
- Preservation of footprint size will facilitate much more usable images
- VIIRS fine channels replicate the capability of AVHRR
- Many products in addition to EDRs
- True color capability preserved for VIIRS

