<u>Infrared Atmospheric Sounding Interferometer</u>

IASI FM2 on METOP A In-Flight Calibration

International TOVS Study Conference 15 4-10, October 2006 Maratea Italy

<u>D. Blumstein</u>¹, B.Tournier², C.Buil¹, T.Phulpin¹, R.Fjortoft¹, F.Bernard¹, T.Carlier¹, G.Chalon¹, G.Ponce¹, I.Gaudel¹, F.Cayla³,

- (1) Centre National d'Etudes Spatiales (CNES), Toulouse, France
- (2) NOVELTIS, Toulouse, France
- (3) SISCLE, France

- ☐ IASI Project status
- Overview of the IASI L1 Cal/Val

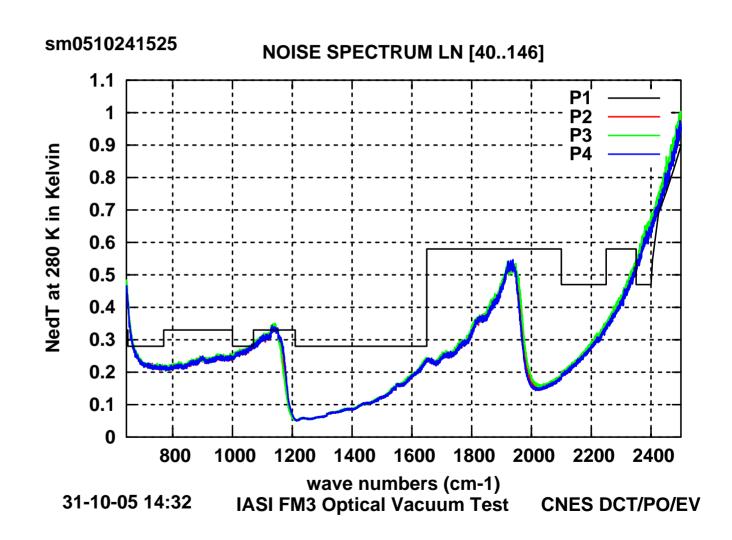
- Implementation
 - > Partnerships
 - Planning

IASI Project Status

Since last ITSC conference

- Instruments
 - ➤ IASI FM2 on METOP A : ready for launch
 - > FM3 Vacuum Test completed in October 2005 (see results synthesis)
 - ➤ PFM Refurbishment (PFM is the first IASI model → tested in 2003)
 - Anti-contamination bellow, detectors
 - PFM-Refurbished Vacuum Test on-going
 - Beginning of pumping : 6th of October 2006
 - First optical measurement awaited on 14th of October

System

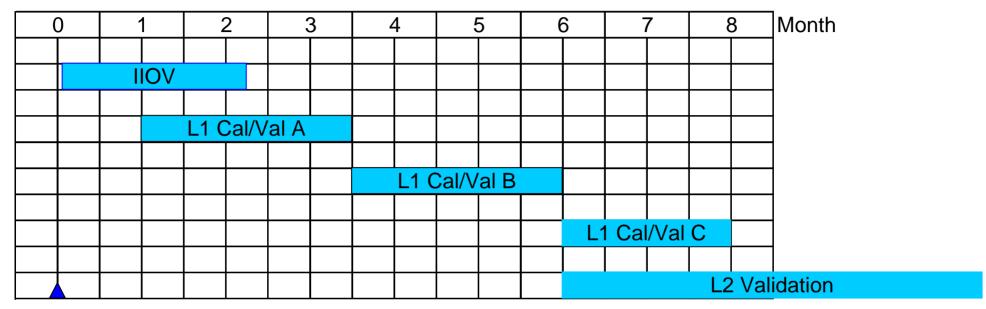

- > Validation as part of the EPS system validation : start in October 2005
 - Reception and processing of IASI L0 data (Eumetcast terminal) : OK
 - Participation to SSVT (end-to-end tests with the satellite) : OK
- Rehearsal for in-flight commissioning activities : OK
- System : ready for launch

- Radiometic noise
 - Better than FM2 especially in B1
- Calibration
 - Spectral and
 - > Radiometric
- very good (as FM2)
- Low rate of ice contamination
 - > As for FM2

Overview of the IASI L1 Cal/Val (1/3)

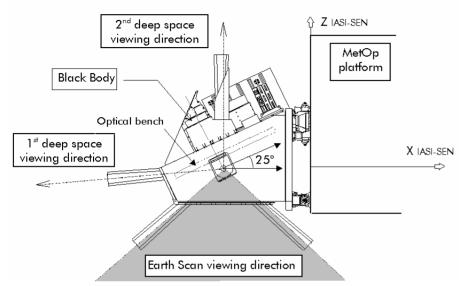
- The IASI L1 CalVal Plan describes the process, methods and data that will allow
 - To obtain the ultimate performances of Level 1 IASI products (calibration),
 - ➤ To demonstrate these performances (validation) during flight operations
- ☐ General goal of the Level 1 Cal/Val activities is to ensure that
 - > after the commissioning and thereafter during the mission lifetime,
 - > the IASI Level 1 products are compliant with their specifications
 - radiometric, spectral and geometric performances
- □ IASI Level 1 Cal/Val performed under CNES responsibility
 - > In close cooperation with EUMETSAT
 - > IASI TEC

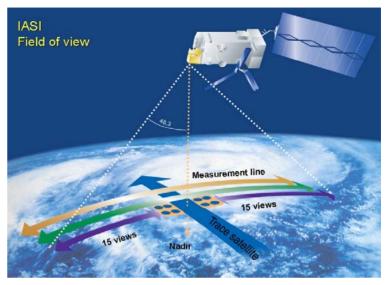
Overview of the IASI L1 Cal/Val (2/3)



- ☐ Use of already developed, state-of-the-art methods applicable to every infrared sounder of the same class of performance
- □ Cal/Val activities will begin when first goal of the commissioning phase will be achieved: to establish a stable and nominal behavior of the system
 - Health parameters of the instrument monitored by the EPS/CGS
 - All the needed products verified and available in the IASI TEC
 - Problems, if any, either from hardware or processing clearly identified and flagged
- □ IASI Level 1 Cal/Val activities and performance monitoring will be mostly performed in the IASI TEC using
 - Products obtained via a Eumetcast terminal (PFS format)
 - Reference version (latest update) of the Level 1 processing software
- ☐ In-flight Cal/Val activities broken in 3 (approx.) independent classes
 - Geometry, spectral and radiometry (see next slides)

Overview of the IASI L1 Cal/Val (3/3)


Metop A launch


- □ Accuracy of the validation and diversity of the conditions in which the validations are performed increase with time
 - > Type of reference measurements and their accuracy evolve accordingly
 - stand alone IASI measurements
 - comparison with other spaceborne instruments
 - meteorological soundings and dedicated correlative measurements
 - balloon, aircraft TBC in // with L2 validation

Instrument features supporting Cal/Val activities (1/2)

- ➤ Normal Operation mode : 30 ground footprints (4 pixels each) every cycle (8 sec)
- 2 features of the instrument will be used intensively for Cal/Val activities
 - ➤ External Calibration Mode → Viewing dir. (i.e. Scan Position : SP) remains fixed
 - On-board radiometric calibration is performed as in N.Op mode
 - Fixed position can be changed at each cycle: SP=1..30 (30 Earth Views), BB, CS1, CS2 or SM
 - Verification Data Selection (in N.OP mode and in E.Cal mode)
 - 1 raw interferogram (over 408) is available in scientific telemetry every 8 sec
 - Pixel Number, Step Number and Spectral Band (PN, SN, SB) which define this interferogram can be modified every 8 sec (periodic pattern modified by TC VDS)

Instrument features supporting Cal/Val activities (2/2)

- □ Raw interferograms transmitted to the ground (sampled : 1/408)
 - Including continuous part of the signal (for NL correction)
- Synthesis of imaginary part of the on-board calibrated spectra
- Spectral Overlaps B1/B2, B2/B3 (under sampled : 1/120)
 - Direct comparison of the calibrated spectra measured by 2 different detectors
 - Spectral
 - Radiometric
- 2 Cold Space Calibration Views : CS1, CS2
- External Calibration Mode with Earth View Target
 - Spatial Oversampling
 - > (Quasi) Simultaneous measurement of the same scene by 2 different pixels
- ☐ IASI Integrated Imager (IIS)

IIOV Phase

- Objective
 - Putting IASI into functional mode
 - > Functional verification of instrument behavior
 - Commandability/Observability
- Instrument performance not necessarily optimal
 - > Instrument state as seen during ground testing (as close as possible)
 - Detectors temperature
 - On-board processing parameters
 - > Transition to optimal detectors temperature at the end of IIOV phase
- Overlap between Cal/Val Phase A and IIOV
 - > Assessing some instrument performances with preliminary measurements
 - On board processing parameter optimization (uploaded at the end of IIOV)
 - Mainly : NL corrections, Band Limits, Coding Tables

Geometrical performances assessment

		Activation & Evaluation	Early validation	in depth validation
Geometry	Localisation	- co-registration IIS/AVHRR - co-registration IIS/sounder - validation of navigation - validation of radiance spatial distribution in sounder IFOV - line of sight short term stability	- co-registration IIS/AVHRR → stability check - co-registration IIS/sounder→ stability check	- validation of radiance spatial distribution in sounder IFOV (from Level 2 feedback)
	IPSF	- approximate check	co-registration co-registration	- sounder inter bandco-registration→ stability check

- Navigation of IASI products based on co-registration of IIS images and soundings with AVHRR products (Level 1B AVHRR full resolution, fully navigated)
- First version of IIS-sounder co-registration offset available from on-ground calibration
- Validation done wrt to highly contrasted scenes (e.g. coastlines)

Spectral performances assessment

		Activation & Evaluation	Early validation	in depth validation
Spectral	calibration	 verify operational calibration (B3) approximate validation in B1, B2 using synthetic spectra (climatology) 	- validation of spectral calibration in B1,B2,B3 (use of NWP profiles)	- validation w.r.t. IASI balloon spectra
	ISRF - Cube Corner Offset → stability check - validation of ISRF not considered as part of "early validation"		- analysis of residuals w.r.t. IASI balloon spectra	

- ☐ Use of off-axis detectors induces possible spectral calibration defects
 - > Correction achieved by using the atmosphere itself (CO2 2350-2380 cm-1 in B3 band)
 - > This correction is extrapolated to the whole IASI spectral band (very few parameters are needed to model the Michelson interferometer)
- ☐ GEISA/IASI used as the reference spectroscopic database
- ☐ It is expected that validation can be achieved using a Line by line radiative transfert model (4A will be used for validation at 3 wavenumbers in each 3 bands)
 - > Selection of scenes with very good spatial uniformity (clear sky on sea) is necessary
 - AVHRR images analysis and subsequent selection of the corresponding IASI products

Radiometric performances assessment

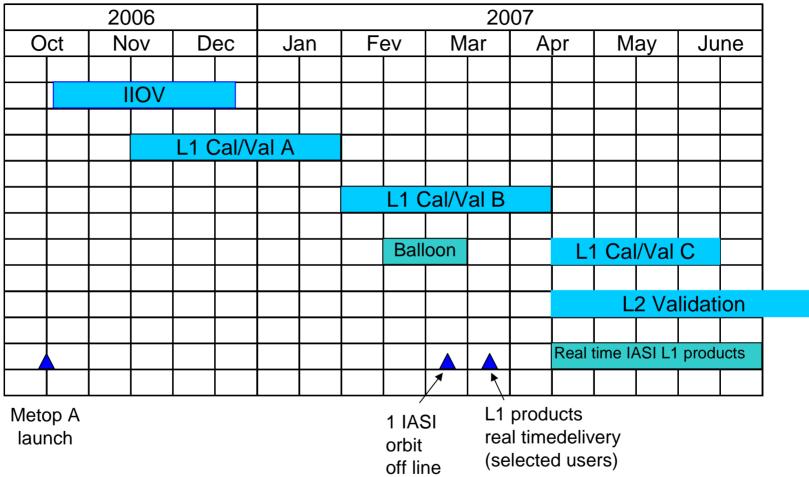
	Activation & Evaluation	Early validation	in depth validation
Radiometry	- non-linearity in-flight	- Cold Space views CS1 /CS2	- intercalibration with
	estimation	verification	AIRS radiances
	- noise (sounder & IIS)	- approximate validation of calibration	- statistical analysis of the
	- residual analysis of	w.r.t. AVHRR (B1 & B3).	residuals from radiance
	the on-board radiometric	- limited validation of B2 through	assimilation in NWP
	calibration	interband B1/B2 & B2/B3 overlaps	models
	- inter pixel calibration	- idem w.r.t. HIRS	- sounder noise covariance
	- inter band calibration	- direct comparison w.r.t AIRS radiance	matrix in-flight
		- micro-window analysis	
		- IIS calib. w.r.t AVHRR	

- Radiometric calibration of the IASI sounder level 1 products based on
 - > Cold and Hot calibration views measured each 8 sec
 - Non-Linearity correction performed on the raw interferograms (on-board)
 - > Initial radiometric calibration (on-board) and post-calibration (in level 1 processing)
 - First version of lookup tables used to implement these corrections known from the pre-launch calibration of the instrument → to be updated in-flight (detectors temperature, etc.)
- Early validation of the radiometry based on comparison between IASI and other instruments on-board METOP + other sounder (AIRS)
 - when geometry allows it
 - In depth validation → see slide on analysis of NWP assimilation residuals

How can NWP Centers support L1 Cal/Val activities?

- □ IASI Radiometric calibration accuracy specifications very stringent
 - > Absolute : 0.5 K
 - > Relative :
 - 0.2 K between the 120 soundings of a scan line and all 8500 channels
 - 0.15 K short term drift (orbital period)
 - 0.15 K long term drift (lifetime)
- It is believed that validation at these level of accuracy can be approached through statistical analysis of NWP residuals
 - Diversity of geophysical conditions
 - > Diversity of models and radiative transfer models
- □ Please, consider joining the effort already initiated with ECMWF, UK MetOffice, Meteo France and EUMETSAT
 - > Thomas Auligne paper will be redistributed on ITWG NWP mailing list
 - Fiona Hilton presentation

Direct Partnerships



- METEO FRANCE (CMS)
 - Cloud Mask software (MAIA) implemented in TEC
 - Cloud Mask, expertise for Clear Sky Validation
 - Radiometric Intercalibration with HIRS, AVHRR
 - NWP 3D fields
- ☐ Laboratoire de Physique Moléculaire et Applications (CNRS/LPMAA)
 - > IASI Balloon (mainly spectral validation)
- ECMWF, UK MetOffice, METEO FRANCE and others
 - Daily Monitoring of NWP residuals
 - > Providing if necessary detailed residuals files for investigation

Planning

- ➤ IASI Balloon campaign belongs logically to Cal/Val C
 - Has been advanced for operational constraints
 - Key point planned in January to confirm the flight

- ☐ Visit the CNES IASI Web site
 - http://smsc.cnes.fr/IASI

Thank you