SPARE-ICE: synergistic IWP from passive operational sensors

Gerrit Holl^{1,2}, Salomon Eliasson³, Jana Mendrok¹, Stefan Buehler⁴

¹Luleå University of Technology, Kiruna, Sweden
 ²Now at: University of Toronto, Toronto, Canada
 ³Swedish Meteorological and Hydrological Institute
 ⁴University of Hamburg, Germany

31 March 2014

Big thanks to ITWG for financing conference participation

Outline

Outline

The problem

Clouds in climate models and observations

Eliasson et al. (2011)

- ${\rm IWP}\,[g/m^2]=\int {\rm IWC}\,[g/m^3].$ Is fundamental to the hydrological cycle and radiation budget
- Large model discrepancies, large observation discrepancies

The problem

Cloud observation technologies — sensitivities

Aim of study

- Develop new IWP retrieval that improves upon existing ones
- Investigate synergies between different techniques: visible, near-IR, thermal IR, microwave
- Use operational sensors only
 - Provides good spatial and temporal coverage
 - Allows for time series studies
 - Will certainly continue into the future

Cloud observation technologies — collocations

Collocations are helpful/essential for:

- Comparing existing products on a footprint-level basis (Eliasson et al., 2013).
- Studying synergistic retrievals
- Inter-calibrating sensors
- Improving passive by training with active

Neural network-based retrievals

 $IWP_{NN} = G(\mathbf{x})$

- Divide reference dataset into training, validation, testing data.
- Training algorithm assigns weights and biases to each vertix connecting nodes.

- Use training data to minimise $|G(x_1, x_2, ..., x_n) IWP_{ref}|$
- Use validation data to avoid "over-fitting"
- Use testing data to estimate the IWP-dependent uncertainty.
- Two neural networks: one for IWP, one for cloud probability

Inputs

Sensor	Ch.	Spectral range
	1	0.58–0.68 μm
AVHRR	2 3b	$3.55-3.93 \mu\text{m}$
AVHRR AVHRR	4 5	10.3–11.3 μm 11.5–12.5 μm
MHS	3	$183 \pm 1 \text{ GHz}$
MHS MHS	4 5	$183\pm3 m GHz$ 190 GHz

Also uses input from:

- Solar angles
- Satellite angles
- Surface elevation
- Skin temperature from CFS reanalysis (Saha et al., 2010)

Target: 2C-ICE combined radar/lidar, official CloudSat product (Deng et al., 2010). Good reasons to believe this provides the best IWP estimate we have.

Inputs

Sensor	Ch.	Spectral range
/AX/HIR/R/ /AX/HIR/R/	/¥ /2	0.58–0.68 μm 0.725–1 μm
AVHRR	3b	3.55–3.93 μm
AVHRR	4	10.3–11.3 μ m
AVHRR	5	11.5–12.5 μ m
MHS	3	$183\pm1{ m GHz}$
MHS	4	$183\pm3{ m GHz}$
MHS	5	190 GHz

Also uses input from:

- Solar angles
- Satellite angles
- Surface elevation
- Skin temperature from CFS reanalysis (Saha et al., 2010)

Target: 2C-ICE combined radar/lidar, official CloudSat product (Deng et al., 2010). Good reasons to believe this provides the best IWP estimate we have.

Swath examples

Swath examples

Swath examples

Holl, et al. (gerrit.holl@utoronto.ca)

SPARE-ICE

Gridded mean SPARE-ICE

SPARE-ICE gridded mean IWP, 2007

31 March 2014 11 / 13

Gridded mean delta

Difference SPARE-ICE - MODIS Aqua IWP, 2007

Holl, et al. (gerrit.holl@utoronto.ca)

Outlook

- Paper published (Holl et al., 2014)
- Extend dataset for longer time periods and other satellites
- Do a more formal information content analysis
- Contact authors for data access

감사합니다!

(gamsahamnida!)

- All my co-authors and other friends near and far
- Funding from Swedish Research Council
- Conference support from ITWG

Extra slides

Performance for cloud filter neural net, SPARE-ICE

Systematic error

- Deng, M., Mace, G. G., Wang, Z., and Okamoto, H. (2010). Tropical composition, cloud and climate coupling experiment validation for cirrus cloud profiling retrieval using CloudSat radar and CALIPSO lidar. J. Geophys. Res., 115.
- Eliasson, S., Buehler, S. A., Milz, M., Eriksson, P., and John, V. O. (2011). Assessing observed and modelled spatial distributions of ice water path using satellite data. Atmos. Chem. Phys., 11:375–391.
- Eliasson, S., Holl, G., Buehler, S. A., Kuhn, T., Stengel, M., Iturbe-Sanchez, F., and Johnston, M. (2013). Systematic and random errors between collocated satellite ice water path observations. J. Geophys. Res., 118:1–14.
- Holl, G., Buehler, S. A., Rydberg, B., and Jiménez, C. (2010). Collocating satellite-based radar and radiometer measurements methodology and usage examples. Atmos. Meas. Tech., 3:693–708.
- Holl, G., Eliasson, S., Mendrok, J., and Buehler, S. A. (2014). SPARE-ICE: synergistic Ice Water Path from passive operational sensors. J. Geophys. Res., 119:1504–1523.
- Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Klister, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Ganyo, G., Wang, J., Hou, Y.-T., Chuang, H.-Y., Juang, H.-M., Sela, J., Iredell, M., Treadon, R., Kleist, D., van Delst, P., Keyser, D., Derber, J., Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., van den Dool, H., Kumar, A., Wang, W., Long, V., Chellia, M., Xue, Y., Huang, B., Schemm, J.-K., Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C.-Z., Liu, Q., Chen, Y., Han, Y., Curull, L., Reynolds, R., Rutledge, G., and Goldberg, M. (2010). The NCEP climate forecast system reanalysis. Bull. Amer. Met. Soc., 91(8):1015–1057.