

Cheng-Zhi Zou

NOAA/NESDIS/Center For Satellite Applications and Research

Introduction

 Stratospheric temperature trend is an important indicator of anthropogenic global warming

Stratospheric cooling:

- Ozone depletion
- Increasing carbon dioxide and other greenhouse gases
- Radiosonde observations difficult to reach to mid-upper stratospheres
- Lidar observations are sparse
- Rely on satellite observations to determine trend

SSU Instrument

- One of the NOAA TOVS instruments (MSU, HIRS, SSU) from 1978-2007
- Flown on seven NOAA polar orbiting satellites
- Infrared radiometer use pressure modulation technique to measure atmospheric radiation from CO₂ 15-μm v₂ band
- An interference filter allows only 15-μm band to pass through
- A cell of CO₂ gas is placed in the instrument's optical path with its pressure modulated in a cyclic manner
- Cloud effect minimal in stratosphere
- Global coverage

Figure 9.--The complete SSU, showing the views to earth and to space

SSU Channels

Weighting function determined by the pressure values

Channel Number	Cell pressure (specification)	weighting function (Pre-launch specification)
1	100 (hPa)	15mb (29km)
2	35 (hPa)	5mb (37km)
3	10 (hPa)	1.5mb (45km)

P(peak)~P(cell)/[CO₂]^{1/2},

Instrument Calibration

- 8 radiometric samples used to obtain raw counts: 6 samples also tested
- Averages of 4 space views and 4 warm target views to calibrate all Earth views within a calibration cycle
- Line Scheme (1-3, 4-7) used: sensitivity tested with different line schemes
- Measurements from space side Thermistor used to represent warm target temperature: PRT and sun side thermistor also tested
- Cold space correction implemented: NOAA-6 laboratory test data used as reference, other satellites were determined from inter-satellite biases
- Asymmetry correction: implementation depends on community requirement
- Quality control on calibration coefficients

Scan and Calibration Cycle

Recalibrated Radiances—With Cold Space Correction

Recalibration difference from operational calibration by a constant

Recalibrated versus operational calibrated anomaly time series

Differences between recalibration and NOAA operational calibration

The Trend Debate — channel 1

Plot from Thompson et al. 2012 in Nature

The Trend Debate – Channel 2

Plot from Thompson et al. 2012 in Nature

Issues in SSU Observations

- ➤ Gas leaking problem in the CO₂ cell
- ➤ atmospheric CO₂ variations
- > diurnal drift effect → semi-diurnal tides
- > Limb-effect
- > inter-satellite biases

Cell Pressure Time Series from Gas Leak

- CO₂ cell placed between sensor and medium to be Observed
- Cell pressure determine high Of weighting function
- Cell pressure decreasing due to gas leaking

Plot from S.Kobayashi et al. 2009

Effect of Cell Pressure Decreasing

CO₂ cell pressure decreasing -> weighting function peaks higher

Time Series of the Basic Radiances - Channel 2

- ☐ Large jumps between N11 and N14 during 1995 for ch2 due to cell pressure change effect
- □Structure errors in ch2
- □Ch2 VERY close to UKMO Before NOAA-14 started in 1995

Reasons for Trend Differences Between NOAA and UKMO data—Channel 2

Note Tb changes in NOAA-14 corresponding to its cell pressure changes

NOAA and UKMO Datasets

Relationship between Ch1, Ch2, and Ch3

NOAA Version 2 SSU dataset

Plot from Seidel et al. 2011

Conclusion

 Understood the trend differences between NOAA and UKMO data versions; Established confidence on NOAA reprocessing

 Certain channel features in climate model simulations were also observed in NOAA SSU dataset, which provided validation of accuracies in climate model simulations to a certain extent