

The 20th International TOVS Study Conference (ITSC) October 28 – November 3, 2015 Lake Geneva, Wisconsin

Characteristics of Radiosonde Observations and their Impact in Satellite Sounding Product Validation

Bomin Sun^{1,2}, Tony Reale², Frank Tilley^{1,2}, and Mike Pettey^{1,2}

- 1 I. M. Systems Group, Inc., Rockville, Maryland
- 2 NOAA/NESDIS/STAR, College Park, Maryland

Goals

- 1. What are the RAOB error characteristics & how they are reflected in satellite retrieval validation
 - Temperature
 - Humidity

Coarse-layer averaging statistics:

- ~1 km for AVTP and ~2 km for AVMP
- 2. To what extent that satellite retrieval can detect atmospheric structures shown in RAOBs
 - Atmospheric boundary layer
 - Surface-based inversion
 - Unstable boundary layer
 - Tropopause

100-Ivl retrieval profiles are utilized.

Data

- MetOp-A IASI L2 sounding product developed by NOAA NESDIS.
- Three-yr (2010-2012) RAOB-IASI collocations collected via NPROVS.
- qc-accepted IR+MW IASI retrieval profiles.

7 (837) available out of 837

Sample: 313,500 (837 sites)

Collocations within 6-hr & 50-km

Sample: 550,500 (939 sites)

Collocations within 1-hr & 50-km

Collocations within 3-hr & 50-km

NOAA Products Validation System (NPROVS)

Centralized RAOB and Satellite Product Collocation

https://www.star.nesdis.noaa.gov/smcd/opdb/nprovs

Simplified flow diagram of the NOAA IASI retrieval algorithm

RAOB Accuracy Impact in Validation

- RAOB measurement accuracy characteristics and impact on satellite validation
 - Temperature
 - Humidity

Errors in RAOB T and Impact in Validation

RAOB Temperature error impact in validation

For 10-150 hPa

	All-day	Daytime (Low+High)
RAOB temperature error:	0.27 K	0.49 K
IASI-minus-RAOB difference:	-0.32 K	-0.50K

"Cold bias" in IASI-minus-RAOB at UTLS is largely due to warm bias in RAOB

Radiosonde type relative humidity (RH) bias

Sun et al. (2010, JGR)

RAOB humidity error impact in validation

IASI-minus-RAOB water vapor mixing ratio diff.

RAOB humidity tends to have a dry bias particularly at the upper level during daytime.

This bias largely leads to a "wet bias" in satellite data validated.

Recommend: use nighttime data

However, conventional RAOBs are useful in satellite product validation

An example: as the independent data source verifying the consistency among cloud, temperature and humidity in the IASI retrieval system

RAOB vs. IASI atmospheric structure

- Atmospheric structure features in RAOB vs. IASI retrieval profiles
 - Surface inversion
 - Unstable boundary layer (surface-based inversion cases excluded)
 - Tropopause

Surface-based temperature inversion statistics in RAOBs

Pressure (hPa)

Based on 3-yr global data (445,000 profiles)

Surface-based inversion statistics: RAOB vs. IASI

10

-800

-700 -600

-500

-400 - 300 - 200 - 100

IASI-minus-RAOB inversion depth difference (m)

0

100 200

Diff. in inversion strength

Detection of convective/unstable boundary layer

RAOB vs. IASI unstable boundary layer height (with surface inversion cases excluded)

RAOB and IASI Time Difference Matters in boundary layer detection comparison

RAOB and IASI within 3-hr diff.			
RAOB Inversion	IASI Inversion		
YES (33829)	→ YES <mark>42%</mark>		
Unstable boundary layer RAOB median height is 1 by 239 m.	height 241 m, higher than IASI		

RAOB and IASI within 0.5-hr or less?

RAOB vs. IASI tropopause pressure based on 3-yr collocation data

Based on 3-yr data, tropopause in IASI is 6.1 (\pm 42.9) hPa higher than in RAOB. ₁₈

Summary

- Conventional RAOBs are useful in retrieval product evaluation on individual variables and the physical consistency of different variables as well
- RAOB accuracy issues include T warm bias at UTLS and humidity dry bias in cold & dry environment.
- IASI retrievals can basically capture the climatological characteristics of atmospheric structures (i.e., surface inversion, boundary layer height, and tropopause) shown in radiosonde profiles, but
- Challenge is there for the structure detection on individual profile basis.

Final retrieval and its first-guess vs. radiosonde

AIRS overpass 18 minutes after RS92 launch at Beltsville

IASI retrieval vs. its first-guess

